欧拉回路 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9797    Accepted Submission(s): 3554 Problem Description 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路?   Input 测试输入包含若干测试用例.每个测试用例…
原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连通的 2.所有点的度数为偶数 用邻接矩阵就可以搞了,dfs大法 AC代码: #include<iostream> #include<cstdio> #include<cstring> using namespace std; int n,m; //n是节点数 m是边数 co…
/*这道题是没有重边的,求加几条边构成双联通,求边联通分量,先求出桥然后缩点,成一个棵树 找叶子节点的个数*/ #include<stdio.h> #include<string.h> #define N 1100 int top[N],ma[N][N],dfn[N],low[N],index,f[N][N],n; int Min(int a,int b) { return a>b?b:a; } void tarjan(int u,int pre) {// dfn[u]=lo…
题意: 有n个点,m条边,其中有单向边和双向边,求是否存在欧拉回路 解析: 刚开始想...判断一下每个点的度数不就好了...emm..还是年轻啊.. 判断是解决不了问题的,因为可能会有某两个点冲突,比如说一个点出度比入度大1,但它只有一条无向边,所以这条无向边要变成入边,但这条无向边的v点也是 出度比入度大1,也是需要一条入边,所以这样就会冲突,如果直接判断的话不会判断出来,所以就用到了网络流, 设想一下,我们把这条无向边的容量设为1,那么如果用了这条边,容量就会为0,所以不会重复使用,且不产生…
最近看到有lua面试题,挺有意思的,一张表中有若干个数,0可以代表任何数 比如有张表{9, 2, 4, 1, 3, 0, 0, 0, 0},按照规则这张表中的四个0可以用来代表5,6,7,8,那么这张表是连续的,判断思路我是这样的 1.先遍历表,计算出0的个数 2.对表进行排序 3.计算相邻数之间的差值x,明显,如果x为1,那么这两个是连续的,如果不为1,那么x-1就是这两个数之间需要补充的数的个数,比如6和4的差x = 2,那么6和4之间需要补充的数就是x - 1 = 1,补一个5就可以连续了…
知识讲解: 在代码里我们是围绕 low 和 dfn 来进行DFS,所以我们务必明白 low 和 dfn 是干什么的? 有什么用,这样才能掌握他.   1.  dfn[]  遍历到这个点的时间 2.  low[]  遍历到这个所能连接到的最短时间,说明那个最短时间可以遍历带他,他也可以走到那个最短时间. 3.  我们每次出栈的点就是一个强联通分量(这里建议观看一下课件里面的Tarjan求强联通算法的模拟过程).   #include<cstdio> #include<cstdlib>…
Sequence II Time Limit: 9000/4500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 849    Accepted Submission(s): 204 Problem Description Mr. Frog has an integer sequence of length n, which can be denoted as a1,a2,⋯…
  为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间.Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i.  Input 输入包含多组数据,输入的第一行有两个数:N和M,接下来…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路? 解题思路:判断无向图是否存在欧拉回路,判断每个点的度数是否为偶数+并查集确认连通性. 代码: #include<iostream> #include<cstring> #include<cstdio> #define CLR(arr,val) m…
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是否存在欧拉回路? Input 测试输入包含若干测试用例.每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M:随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号).当N为0时输入结  束. Output 每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0. Sample Input 3 3 1 2 1 3…