邻近梯度下降法 对于无约束凸优化问题,当目标函数可微时,可以采用梯度下降法求解:当目标函数不可微时,可以采用次梯度下降法求解:当目标函数中同时包含可微项与不可微项时,常采用邻近梯度下降法求解.上述三种梯度算法均属于离线批处理类型算法,在大规模的数据问题中,每次迭代都需要计算整个数据集梯度,因而需要较大的计算代价和存储空间.在线邻近梯度法(Online Proximal Gradient,OPG)是随即优化算法与临近梯度算法的结合,是一种典型的随机优化方法,以单个或小批量采样数据而实现数据实时处理…
近期在搞论文,须要用梯度下降算法求解,所以又一次整理分享在这里. 主要包含梯度介绍.公式求导.学习速率选择.代码实现. 梯度下降的性质: 1.求得的解和选取的初始点有关 2.能够保证找到局部最优解,由于梯度终于会减小为0,则步长与梯度的乘积会自己主动越来越小. 梯度简单介绍 一个多元函数的在某点的梯度方向是函数值在该点增长最快的方向.即方向导数取最大值的方向. 问题描写叙述公式求导学习率选择 如果要学习这么一个函数: 那么损失函数能够定义成: 当中X矩阵,每行表示一个数据点,theta是列向量.…
简述 梯度下降法又被称为最速下降法(Steepest descend method),其理论基础是梯度的概念.梯度与方向导数的关系为:梯度的方向与取得最大方向导数值的方向一致,而梯度的模就是函数在该点的方向导数的最大值. 现在假设我们要求函数的最值,采用梯度下降法,如图所示: 梯度下降的相关概念 在详细了解梯度下降的算法之前,我们先看看相关的一些概念. 1. 步长(Learning rate):步长决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度.用上面下山的例子,步长就是在当前这一步…
昨天开始看Ng教授的机器学习课,发现果然是不错的课程,一口气看到第二课. 第一课 没有什么新知识,就是机器学习的概况吧. 第二课 出现了一些听不太懂的概念.其实这堂课主要就讲了一个算法,梯度下降算法.到了教授推导公式的时候感觉有点蒙,不过后来仔细想想,也大概理解了,这个算法并没有想象的晦涩.在这堂课中,梯度下降算法是为了解决线性回归问题的.视频中的例子是给你一堆训练数据,(房子面积和对应房价),如果此时给你一个没有出现过的房子面积数据,您能否给出正确的房价?解决思路是首先要看出来房子面积跟房价之…
假设我们要求解以下的最小化问题: $min_xf(x)$ 如果$f(x)$可导,那么一个简单的方法是使用Gradient Descent (GD)方法,也即使用以下的式子进行迭代求解: $x_{k+1} = x_k - a\Delta f(x_k)$ 如果$\Delta f(x)$满足L-Lipschitz,即: 那么我们可以在点$x_k$附近把$f(x)$近似为: 把上面式子中各项重新排列下,可以得到: 这里$\varphi (x_k)$不依赖于x,因此可以忽略. 显然,$\hat f(x,…
概述   梯度下降法(Gradient Descent)是一个算法,但不是像多元线性回归那样是一个具体做回归任务的算法,而是一个非常通用的优化算法来帮助一些机器学习算法求解出最优解的,所谓的通用就是很多机器学习算法都是用它,甚至深度学习也是用它来求解最优解.所有优化算法的目的都是期望以最快的速度把模型参数θ求解出来,梯度下降法就是一种经典常用的优化算法. 梯度下降法的思想   思想就类比于生活中的一些事情,比如你去询问你的一个朋友工资多少,他不会告诉你,但是他会让你去猜,然后告诉你猜的结果.你每…
前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在某一个特征上的值,即特征向量x的某个值 y(i) 每个样本数据的所属类别标签 m 样本数据点的个数 hθ(x) 样本数据的概率密度函数,即某个数据属于1类(二分类问题)的概率 J(θ) 代价函数,估计样本属于某类的风险程度,越小代表越有可能属于这类 我们的目标是求出θ,使得这个代价函数J(θ)的值最…
深度学习课程笔记(四)Gradient Descent 梯度下降算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS17.html    我们知道在神经网络中,我们需要求解的是一个最小化的问题,即:最小化 loss function. 假设我们给定一组初始的参数 $\theta$,那么我们可以算出在当前参数下,这个loss是多少,即表示了这个参数到底有多不好. 然后我们利用上述式子来调整参数,其中梯度可以用▽的形式…
1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最能反映这些样本数据之间的规律呢? 为了解决这个问题,我们需要引入误差分析预测值与真实值之间的误差为最小. 2.梯度下降算法 梯度下降的场景: 梯度下降法的基本思想可以类比为一个下山的过程.假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷). 但此时山上的浓雾很…
1.我们之前已经定义了代价函数J,可以将代价函数J最小化的方法,梯度下降是最常用的算法,它不仅仅用在线性回归上,还被应用在机器学习的众多领域中,在后续的课程中,我们将使用梯度下降算法最小化其他函数,而不仅仅是最小化线性回归的代价函数J.本节课中,主要讲用梯度下降的算法来最小化任意的函数J,下图是我们的问题: (1)梯度下降的思路: 给定θ0和θ1的初始值,首先将θ0和θ1初始化为0,在梯度下降中我们要做的是不停的改变θ0和θ1,来使得J(θ0,θ1)变小,直到我们找到J的值的最小值或者局部最小值…