不记得是怎么接触并最终研究这个课题的了,认识我的人都知道我是没有固定的研究对象的,一切看运气和当时的兴趣.本来研究完了就放在那里了,一直比较懒的去做总结,但是想一想似乎在网络上就没有看到关于这个方面的资料,能搜索到的都是一些关于matlab相关函数的应用,决定还是抽空趁自己对这个算法还有点记忆的时候写点东西吧,毕竟这个算法还有一些应用是值得回味和研究的.而且也具有一定的工程价值. 怎么说呢,其实在很早浏览matlab的图像处理工具箱的时候,就无数次的看到过这些函数,但是无奈当时不知道他们有什么用…
重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程. 图像的预处理在进行图像二值化操作前要对图像进行预处理,包括彩色图像灰化和增强.由于选取阈值需要参照直方图,因此在图像进行处理后,我们再获取图像的直方图以帮助选取阈值.整个流程如下所示: 读取图像→灰度图像→图像增强→图像直方图→二值化处理 2.数学原理(转载,基本可…
这是个简单的算法,是全局二值算法的一种,算法执行速度快. 算法过程简单描述如下: 对于每一个像素,做如下处理 1.计算当前像素水平和垂直方向的梯度. (two gradients are calculated  |I(x + 1, y) - I(x - 1, y)| and |I(x, y + 1) - I(x, y - 1)|);       2.取两个梯度的最大值作为权重.(weight is calculated as maximum of two gradients); 3.更新权重的和…
前几天接触了图像的处理,发现用OPencv处理确实比較方便.毕竟是非常多东西都封装好的.可是要研究里面的东西,还是比較麻烦的,首先,你得知道图片处理的一些知识,比方腐蚀,膨胀,仿射,透射等,还有非常多算法,傅里叶.积分,卷积,频谱,加权. ..,反正我看了半天,是云里雾里的.所以就想先就笼统的过一遍,以后遇到了再详细分析,比較这方面的基础没那么扎实. 先来记录下眼下学习到的一些知识. 首先是图像的灰度处理: CV_LOAD_IMAGE_GRAYSCALE,这是最简单之间的办法,在加载图像时直接处…
Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字节存放灰度值(又称强度值.亮度值),灰度范围为0-255.一般常用的是加权平均法来求像素点的灰度值,opencv开发库所采用的一种求灰度值算法如下: :)Gray = 0.072169 * B + 0.715160 * G + 0.212671 * R 有两种方式可以实现灰度化,如下 方式1 @Te…
图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围.而灰度图像是R.G.B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些.灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征.图像的灰度…
最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法,又叫大津 法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小.因此,使类间方差最大的分割意味着错分概率最小.对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ…
转载:http://www.chinasb.org/archives/2013/01/5053.shtml 1: package org.chinasb.client; 2: 3: import java.awt.Color; 4: import java.awt.image.BufferedImage; 5: import java.io.File; 6: import java.io.IOException; 7: 8: import javax.imageio.ImageIO; 9: 10…
老代码备忘,我对图像处理不是太懂. 注:部分代码引援自网上,话说我到底自己写过什么代码... Private Declare Function GetBitmapBits Lib "gdi32" (ByVal hbitmap As Long, _ ByVal dwCount As Long, _ lpBits As Any) As Long Private Declare Function SetBitmapBits Lib "gdi32" (ByVal hbitm…
cv::threshold(GrayImg, Bw, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);//灰度图像二值化 CV_THRESH_OTSU是提取图像最佳阈值算法.该方法在类间方差最大的情况下是最佳的,就图像的灰度值而言,OTSU给出最好的类间分离的阈值. OpenCV阈值分割的几种方法(types_c.h中的定义): /* Threshold types */ enum { CV_THRESH_BINARY =0, /* value = valu…