Deep Q Learning 使用gym的CartPole作为环境,使用QDN解决离散动作空间的问题. 一.导入需要的包和定义超参数 import tensorflow as tf import numpy as np import gym import time import random from collections import deque ##################### hyper parameters #################### # Hyper Para…
之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连续的, 比如足球场上足球的位置,此时,内存将无力承受这张Q表. 价值函数近似 既然Q表太大,那么怎么办呢? 假设我们可以找到一种方法来预测q值,那么在某个状态下,就可以估计其每个动作的q值,这样就不需要Q表了,这就是价值函数近似. 假设这个函数由参数w描述,那么 状态价值函数就表示为 v(s)≍f(…
在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN.本章内容主要参考了ICML 2016的deep RL tutorial和Dueling DQN的论文<Dueling Network Architectures for Deep Reinforcement Learning>(ICML 2016). 1. Dueling DQN的优化点考虑 在前面讲到的DDQN中,…
原文地址: https://www.cnblogs.com/pinard/p/9797695.html ---------------------------------------------------------------------------------------- 在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础…
在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我们在DDQN的基础上,对经验回放部分的逻辑做优化.对应的算法是Prioritized Replay DQN. 本章内容主要参考了ICML 2016的deep RL tutorial和Prioritized Replay DQN的论文<Prioritized Experience Replay>(I…
1 概述 在之前介绍的几种方法,我们对值函数一直有一个很大的限制,那就是它们需要用表格的形式表示.虽说表格形式对于求解有很大的帮助,但它也有自己的缺点.如果问题的状态和行动的空间非常大,使用表格表示难以求解,因为我们需要将所有的状态行动价值求解出来,才能保证对于任意一个状态和行动,我们都能得到对应的价值.因此在这种情况下,传统的方法,比如Q-Learning就无法在内存中维护这么大的一张Q表. 针对上面的问题,于是有人提出用一个模型来表示状态,动作到值函数的关系.我们令状态为 $s \in S…
针对 Deep Q Learning 可能无法收敛的问题,这里提出了一种  fix target 的方法,就是冻结现实神经网络,延时更新参数. 这个方法的初衷是这样的: 1. 之前我们每个(批)记忆都会更新参数,这是一种实时更新神经网络参数的方法,这个方法有个问题,就是每次都更新,由于样本都是随机的,可能存在各种不正常现象,比如你考试得了90分,妈妈奖励了你,但是也有可能是考了90分,被臭骂一顿,因为别人都考了95分以上,当然这只是个例子,正是各种异常现象,可能导致损失忽小忽大,参数来回震荡,无…
看这篇https://blog.csdn.net/qq_16234613/article/details/80268564 1.DQN 原因:在普通的Q-learning中,当状态和动作空间是离散且维数不高时可使用Q-Table储存每个状态动作对的Q值,而当状态和动作空间是高维连续时,使用Q-Table不现实. 通常做法是把Q-Table的更新问题变成一个函数拟合问题,相近的状态得到相近的输出动作.如下式,通过更新参数 θ 使Q函数逼近最优Q值 . Q(s,a;θ)≍Q′(s,a) 而深度神经网…
本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点,  3处 分叉点, 5个死角, 1条活路Q-learning 的概念 其实就是一个算法, 数学的,或者软件程序的算法而已.   对于这种 死的(固定的游戏), 我个人觉得其实就是个穷举算法而已.  Q-learning  步骤:场景一:假设前提:  成功的路  A1, A2, ..... An   …
机器学习算法大致可以分为三种: 1. 监督学习(如回归,分类) 2. 非监督学习(如聚类,降维) 3. 增强学习 什么是增强学习呢? 增强学习(reinforcementlearning, RL)又叫做强化学习,是近年来机器学习和智能控制领域的主要方法之一. 定义: Reinforcement learning is learning what to do ----how to map situations to actions ---- so as to maximize a numerica…