前言 在经典HS光流算法中,图像中两点间的灰度变化被假定为线性的,但实际上灰度变化是非线性的.本文详细分析了灰度估计不准确造成的偏差并提出了一种改进HS光流算法,这种算法可以得到较好的计算结果,并能明显减少光流计算的迭代次数. 经典HS光流法的误差分析 以前的梯度计算方法只考虑到了图像灰度的一阶变化率而没有考虑高阶部分,在实际应用中会导致较大误差.根据如下一般泰勒公式: (1) 假设物体没帧的位移是0.5像素,那么如果物体移动了30个像素之后,累计的误差可达 在一维情况下,该误差产生的机理如下图…
HS 光流法详解 前言 本文较为详细地介绍了一种经典的光流法 - HS 光流法. 光流法简介 当人的眼睛与被观察物体发生相对运动时,物体的影像在视网膜平面上形成一系列连续变化的图像,这一系列变化的图像信息不断 "流过" 视网膜,好像是一种光的  "流",所以被称为光流. 光流是基于像素点定义的,所有光流的集合称为光流场.通过对光流场进行分析,可以得到物体相对观察者的运动场.在这过程中分析的算法称为光流法. HS 光流法的推导 HS光流计算基于物体移动的光学特性的两个…
参考论文:1. High Accuracy Optical Flow Estimation Based on a Theory for Warping, Thomas Box, ECCV20042. Beyond Pixels Exploring New Representations and pplications for Motion Analysis, Ce Liu, MIT20093. Lucas/Kanade meets Horn/Schunck: Combining local an…
参考论文:1. High Accuracy Optical Flow Estimation Based on a Theory for Warping, Thomas Box, ECCV20042. Beyond Pixels Exploring New Representations and pplications for Motion Analysis, Ce Liu, MIT20093. Lucas/Kanade meets Horn/Schunck: Combining local an…
本周主要介绍了梯度下降算法运用到大数据时的优化方法. 一.内容概要 Gradient Descent with Large Datasets Stochastic Gradient Descent Mini-Batch Gradient Descent Stochastic Gradient Descent Convergence Advanced Topics Online Learning Map Reduce and Data Parallelism(映射化简和数据并行) 二.重点&难点…
前言 本文较为详细地介绍了一种经典的光流法 - HS 光流法. 光流法简介 当人的眼睛与被观察物体发生相对运动时,物体的影像在视网膜平面上形成一系列连续变化的图像,这一系列变化的图像信息不断 "流过" 视网膜,好像是一种光的  "流",所以被称为光流. 光流是基于像素点定义的,所有光流的集合称为光流场.通过对光流场进行分析,可以得到物体相对观察者的运动场.在这过程中分析的算法称为光流法. HS 光流法的推导 HS光流计算基于物体移动的光学特性的两个假设: 1. 运动…
LK光流算法:提高计算精度和增加搜索范围 关于LK算法的基本理论,见:http://www.cnblogs.com/dzyBK/p/4960630.html 这里主要阐述如何提高LK算法的计算精度和在高斯金字塔上应用LK算法. 1.提高LK算法的精度 其实这也并不是什么高大尚的东西.通俗地讲,就是反复调用LK算法来提高精度.这种反复调用算法本身来提高算法精度的方法,不仅对LK算法可以使用,对其它光流算法也可以使用.的确也有很多光流算法是这么做的.除了光流算法,其它领域的很算法也都可以这么做.其实…
Horn–Schunck光流算法[1]是一种全局方法估算光流场. 参考博文:https://blog.csdn.net/hhyh612/article/details/79216021 假设条件: HS算法除了需要满足LK光流前两个假设之外,增加了一个假设条件: 场景中属于同一物体的像素形成光流场向量应当十分平滑,只有在物体边界的地方才会出现光流的突变,但这只占图像的一小部分,总体上来看图像的光流场应当是平滑的. 数学原理推导: 仍然是两帧图像I(x, y, t), 和I(x+δx, y+δy,…
前言 上一篇中介绍了计算图以及前向传播的实现,本文中将主要介绍对于模型优化非常重要的反向传播算法以及反向传播算法中梯度计算的实现.因为在计算梯度的时候需要涉及到矩阵梯度的计算,本文针对几种常用操作的梯度计算和实现进行了较为详细的介绍.如有错误欢迎指出. 首先先简单总结一下, 实现反向传播过程主要就是完成两个任务: 实现不同操作输出对输入的梯度计算 实现根据链式法则计算损失函数对不同节点的梯度计算 再附上SimpleFlow的代码地址: https://github.com/PytLab/simp…
CS231n Convolutional Neural Networks for Visual Recognition -- optimization 1. 多类 SVM 的损失函数(Multiclass SVM loss) 在给出类别预测前的输出结果是实数值, 也即根据 score function 得到的 score(s=f(xi,W)), Li=∑j≠yimax(0,sj−syi+Δ),Δ=1(一般情况下) yi 表示真实的类别,syi 在真实类别上的得分: sj,j≠yi 在其他非真实类…