torch.optim.SGD()各参数的解释】的更多相关文章

看pytorch中文文档摘抄的笔记. class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False)[source] 实现随机梯度下降算法(momentum可选). Nesterov动量基于On the importance of initialization and momentum in deep learning中的公式. 参数: params (iterable) –…
随机梯度下降法 $\theta_{t} \leftarrow \theta_{t-1}-\alpha g_{t}$ Code: optimzer = torch.optim.SGD(model.parameters(),lr = 0.001) 权重衰减 $\theta_{t} \leftarrow(1-\beta) \theta_{t-1}-\alpha \mathbf{g}_{t}$ 其中 $\mathrm{g}_{t}$ 为第 $t$ 步更新时的梯度, $\alpha$ 为学习率, $\be…
内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterable或者是定义了参数组的...~ 参数: params (iterable) – 待优化参数的iterable或者是定义了参数组的...~ torch.optim torch.optim是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法.…
torch.optim torch.optim是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法. 如何使用optimizer 为了使用torch.optim,你需要构建一个optimizer对象.这个对象能够保持当前参数状态并基于计算得到的梯度进行参数更新. 构建 为了构建一个Optimizer,你需要给它一个包含了需要优化的参数(必须都是Variable对象)的iterable.然后,你可以设置optimizer的参数选项,比如学…
原文地址: https://blog.csdn.net/weixin_40100431/article/details/84311430 ------------------------------------------------------------------------------------------------ 当网络的评价指标不在提升的时候,可以通过降低网络的学习率来提高网络性能.所使用的类 class torch.optim.lr_scheduler.ReduceLROnP…
一.简化前馈网络LeNet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 import torch as t     class LeNet(t.nn.Module):     def __init__(self):         super(LeNet, self).__init__()         self.features = t.nn.Sequential(  …
torch.optim是一个实现了多种优化算法的包,大多数通用的方法都已支持,提供了丰富的接口调用,未来更多精炼的优化算法也将整合进来. 为了使用torch.optim,需先构造一个优化器对象Optimizer,用来保存当前的状态,并能够根据计算得到的梯度来更新参数. 要构建一个优化器optimizer,你必须给它一个可进行迭代优化的包含了所有参数(所有的参数必须是变量s)的列表. 然后,您可以指定程序优化特定的选项,例如学习速率,权重衰减等. optimizer = optim.SGD(mod…
1. python 中 axis 参数直觉解释 网络上的解释很多,有的还带图带箭头.但在高维下是画不出什么箭头的.这里阐述了 axis 参数最简洁的解释. 假设我们有矩阵a, 它的shape是(4, 3), 如下: import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # a.shape = (4, 3) 要做如下不同维度求和操作: # keepdims=True 保持了结果维度 s0 =…
在Controller的开发中,经常会用到很多注解,下面解释一下关于形参常用注解的一些解释,他们主要是用来接收参数的. @ModelAttribute("vo", ObjectVo vo)   自动填充对象,如果jsp页面的表单对应的name属性和VO对象相同,会自动填充对象 @RequestParam(value="dType", required=true)   可以替代request.getParameter()获取参数值 @PathVariable   从访…
使用Ganglia监控整个Hadoop集群,看到Ganglia采集的各种指标:CPU各个具体的指标含义解释如下: ①CPU(监测到的master主机上的CPU使用情况) 从图中看出,一共有五个关于CPU的指标.分别如下: ⓐ User User表示:CPU一共花了多少比例的时间运行在用户态空间或者说是用户进程(running user space processes).典型的用户态空间程序有:Shells.数据库.web服务器…… ⓑ Nice Nice表示:可理解为,用户空间进程的CPU的调度…