关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t \rangle}\) 表示某一个输入数据在 \(t\) 时刻的输入:\(a^{\langle t \rangle}\) 表示神经网络在 \(t\) 时刻时的hidden state,也就是要传送到 \(t+1\) 时刻的值:\…
对于 \(Softmax\) 回归的正向传播非常简单,就是对于一个输入 \(X\) 对每一个输入标量 \(x_i\) 进行加权求和得到 \(Z\) 然后对其做概率归一化. Softmax 示意图 下面看一个简单的示意图: 其中 \(X\in\mathbb{R}^{n\times m}\) 是一个向量或矩阵,这取决于传入的是一个训练样本还是一组训练样本,其中 \(n\) 是输入特征的数量,\(m\) 是传入的训练样本数量:此图只是示意的一个简单的 Softmax 的传播单元,可以把它理解为一个神经…
在<神经网络的梯度推导与代码验证>之vanilla RNN的前向传播和反向梯度推导中,我们学习了vanilla RNN的前向传播和反向梯度求导,但知识仍停留在纸面.本篇章将基于深度学习框架tensorflow验证我们所得结论的准确性,以便将抽象的数学符号和实际数据结合起来,将知识固化.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 提醒: 后续会反复出现$\boldsymbol{\delta}^{l}$这个(类)符号,它的定义为$\boldsymbol{\delta}^…
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心   个人觉得CNN.RNN和DNN不能放在一起比较.DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在…
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一种表现形式.在一个数据集中,模式有很多不同的表现形式,不管是在传统的机器学习训练的过程,还是是深度学习的训练过程,本质上都是在进行模式提取. 而从信息论的角度来看,模式提取也可以理解为一种信息压缩过程,通过将信息从一种形式压缩为另一种形式.压缩的过程不可避免会造成信息丢失. 笔者这里列举几种典型的体…
前置知识   求导 知识地图   神经网络算法是通过前向传播求代价,反向传播求梯度.在上一篇中介绍了神经网络的组织结构,逻辑关系和代价函数.本篇将介绍如何求代价函数的偏导数(梯度). 梯度检测   在进入主题之前,先了解一种判断代价函数的求导结果是否正确的方法,这种方法称为梯度检测.现在假设我们已经掌握了反向传播,可以计算出代价函数的偏导数.   当函数只有一个变量时,已知导数是切线的斜率,如果能求出某个点的斜率,也就求出了该点的导数.当ε足够小时(如10的-4次方),θ处的斜率可以近似表示为如…
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法.该方法对网络中所有权重计算损失函数的梯度.这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数. 在神经网络上执行梯度下降法的主要算法.该算法会先按前向传播方式计算(并缓存)每个节点的输出值,然后再按反向传播遍历图的方式计算损失函数值相对于每个参数的偏导数. 我们将以全连接层,激活函数采用 Sigm…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/234 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/263 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
1. RNN循环神经网络 1.1 结构 循环神经网络(recurrent neural network,RNN)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络.RNN的主要用途是处理和预测序列数据.全连接的前馈神经网络和卷积神经网络模型中,网络结构都是从输入层到隐藏层再到输出层,层与层之间是全连接或部分连接的,但每层之间的节点是无连接的. 图 11 RNN-rolled 如图 11所示是一个典型的循环神经网络.对于循环神经网络,一个非常重要的概念就是时刻.循环神经网…