Decoders Matter for Semantic Segmentation: Data-Dependent Decoding Enables Flexible Feature Aggregation 2019-04-24 16:53:25 Paper:https://arxiv.org/pdf/1903.02120.pdf Code(unofficial PyTorch Implementation):https://github.com/LinZhuoChen/DUpsampling…
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程,分割的文章次之,而定位的文章就少之又少了.这其中的缘由也很简单:识别目前来说已经不是什么难事了,所以容易写,但分割和定位却仍然是一个头疼不已的问题,不同场景方法不同,甚至同一场景也要结合多种图像处理方法,因此很难有通用的解决策略.在深度学习火起来之后,很多研究人员开始尝试用深度学习的特征提取能力来…
[图像处理笔记]总目录 0 引言 特征提取就是从图像中提取显著并且具有可区分性和可匹配性的点结构.常见的点结构一般为图像内容中的角点.交叉点.闭合区域中心点等具有一定物理结构的点,而提取点结构的一般思想为构建能够区分其他图像结构的响应函数或者从特征线或轮廓中进行稀疏采样.Harris角点检测器便是运用二阶矩或自相关矩阵来加速局部极值搜索并保证方向的不变性.基于像素比较的特征提取方法也称为二值特征,通常具有极高的提取效率并具有一定的方向不变性以及所提取的特征点具有较高的重复率,对后续的匹配具有重要…
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx…
Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun 本文的出发点是做Instance-aware Semantic Segmentation,但是为了做好这个,作者将其分为三个子任务来做: 1) Differentiating instances. 实例区分 2) Estimating masks. 掩膜估计 3) Categorizing obje…
论文题目是STC,即Simple to Complex的一个框架,使用弱标签(image label)来解决密集估计(语义分割)问题. 2014年末以来,半监督的语义分割层出不穷,究其原因还是因为pixel级别的GroundTruth太难标注,因此弱监督成了人们研究的一个热门方向. 作者的核心思想是提出了层层递进的三个DCNN. 具体来讲,作者一共训练了三个网络:Initial DCNN.Enhanced DCNN和Powerful DCNN.分别解释如下: 1 . Initial DCNN:…
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04-24 14:49:10 Paper:https://arxiv.org/pdf/1810.10804.pdf 在过去的许多年,大家一直认为网络结构的设计是人类的事情.但是,近些年 NAS 的发展,打破了这种观念,用自动化的方法在给定的数据上设计合适的网络结构,变的势不可挡.本文在语义分割的任务上,尝…
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille, Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 U…
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进行结合.该文的两个亮点:(1)将CNN应用到region proposals 用于对目标物体的定位.(2)对于较少数量的标签数据,先在规模较大的数据集上进行有监督的预训练,然后针对特定场景进行微调,发现性能提升的较大.R-CNN:region with CNN features 介绍 特征问题:视觉…
论文源址:https://arxiv.org/abs/1611.06612 tensorflow代码:https://github.com/eragonruan/refinenet-image-segmentation 摘要 RefineNet是一种生成式的多路径增强网络,在进行高分辨率的预测时,借助远距离的残差连接,尽可能多的利用下采样过程中的所有信息.这样,通过前期卷积操作得到的细粒度特征可以增强能够获得图像更高层次信息更深的网络.RefineNet的组件基于残差连接,可以进行端到端的训练.…