洛谷 P2221 [HAOI2012]高速公路】的更多相关文章

链接: P2221 题意: 有 \(n(1\leq n\leq 10^5)\) 个点,从第 \(i(1\leq i< n)\) 个点向第 \(i+1\) 个点连有边.最初所有边长 \(v_i\) 为 \(0\). 有 \(m(1\leq m\leq 10^5)\) 次操作: 操作 \(1\):'C' l r v 表示将 \(l\) 和 \(r\) 之间的所有边长度加上 \(v\). 操作 \(2\):'Q' l r 在第 \(l\) 个到第 \(r\) 个点里等概率随机取出两个不同的点 \(a\…
线段树 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #include<vector> #define INF 0x7f7f7f7f #define MAXN 100005 #define rint register int #define pb push_back #define pii pair<int,int> #define m…
传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们可以把边也转化成一个序列,用$i$表示$(i,i+1)$这一条边,那么只要把区间的右端点减一即可 .发现下面的$C_{r-l+1}^2$很好计算,考虑怎么计算上面的,转化,我们考虑每条边会被算多少次,那么答案变成$$\sum_{i=l}^r\sum_{j=i}^r{sum(i,j)}=\sum_{i…
P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 上面咋算呢 先考虑每条边被算上的次数$ans = \sum_{i=l}^{r}a[i]*(r-i+1)(i-l+1)$ 我们把它拆开再合并瞎搞,按变量$i$的次数分项 蓝后化出来这个式子: $ans = (r - l- r*l+1) *S_{1}+ (l+r)*S_{2}-S_{3}$ $S_{1}…
洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵! 输入格式 第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数. 接下来k行,每行两个正整数…
题目:https://www.luogu.org/problemnew/show/P2221 题意:有n个节点排成一条链,相邻节点之间有一条路. C u v val表示从u到v的路径上的每条边权值都加val. Q l r表示在l到r中等概率选择两个城市的路径长度的期望值. 思路:首先期望值的分子肯定是可以选择的方案数也就是$C^2_{r - l + 1}$ 分子应该是所有可能的路径和.我们可以通过计算每一条边算了多少次得到. 对于第$i$条边,他的左端点有$(i - l + 1)$种可能,右端点…
P2505 [HAOI2012]道路 题目描述 C国有n座城市,城市之间通过m条单向道路连接.一条路径被称为最短路,当且仅当不存在从它的起点到终点的另外一条路径总长度比它小.两条最短路不同,当且仅当它们包含的道路序列不同.我们需要对每条道路的重要性进行评估,评估方式为计算有多少条不同的最短路经过该道路.现在,这个任务交给了你. 输入输出格式 输入格式: 第一行包含两个正整数n.m 接下来m行每行包含三个正整数u.v.w,表示有一条从u到v长度为w的道路 输出格式: 输出应有m行,第i行包含一个数…
P1877 [HAOI2012]音量调节 题目描述 一个吉他手准备参加一场演出.他不喜欢在演出时始终使用同一个音量,所以他决定每一首歌之前他都需要改变一次音量.在演出开始之前,他已经做好一个列表,里面写着每首歌开始之前他想要改变的音量是多少.每一次改变音量,他可以选择调高也可以调低. 音量用一个整数描述.输入文件中整数beginLevel,代表吉他刚开始的音量,整数maxLevel,代表吉他的最大音量.音量不能小于0也不能大于maxLevel.输入中还给定了n个整数c1,c2,c3,...,cn…
P1877 [HAOI2012]音量调节 题目描述 一个吉他手准备参加一场演出.他不喜欢在演出时始终使用同一个音量,所以他决定每一首歌之前他都需要改变一次音量.在演出开始之前,他已经做好一个列表,里面写着每首歌开始之前他想要改变的音量是多少.每一次改变音量,他可以选择调高也可以调低. 音量用一个整数描述.输入文件中整数beginLevel,代表吉他刚开始的音量,整数maxLevel,代表吉他的最大音量.音量不能小于0也不能大于maxLevel.输入中还给定了n个整数c1,c2,c3,...,cn…
原题传送门 这道题还算简单 我们要求的期望值: \[\frac{\sum_{i=l}^r\sum_{j=l}^rdis[i][j]}{C_{r-l+1}^{2}}\] 当然是上下两部分分别求,下面肥肠容易 ,问题在于如何求上面的 我们珂以把上面的换一个形式(枚举每段路会走几次): \[\sum_{i=l}^ra[i]*(r-i+1)*(i-l+1)\] 化简一下这个式子: \[(r-l+1-r*l)*sum1+(r+l)*sum2-sum3\] 其中\(sum1=\sum_{i=l}^ra[i]…