常常需要最图像进行仿射变换,仿射变换后,我们可能需要将原来图像中的特征点坐标进行重新计算,获得原来图像中例如眼睛瞳孔坐标的新的位置,用于在新得到图像中继续利用瞳孔位置坐标. 仿射变换在:http://blog.csdn.net/xiaowei_cqu/article/details/7616044 这位大牛的博客中已经介绍的非常清楚. 关于仿射变换的详细介绍,请见上面链接的博客. 我这里主要介绍如何在已经知道原图像中若干特征点的坐标之后,计算这些特征点进行放射变换之后的坐标,然后做一些补充. *…
当初选方向时就由于从小几何就不好.缺乏空间想像能力才没有选择摄影測量方向而是选择了GIS. 昨天同学找我帮他做图像匹配.这我哪里懂啊,无奈我是一个别人有求于我,总是不好意思开口拒绝的人.于是乎就看着他给的一章节内容開始敲代码了,今天总算给他完毕了. 做的比較简单,中间也遇到了不少问题,尤其是计算量大的问题,由于老师给的数据是粗配准过的数据, RANSAC算法评估时就简化了下. 理论内容: 第5章 图像配准建立几何变换模型 特征点建立匹配关系之后,下一步就是求解图像之间的变换关系.仿射变换可以非常…
今天在看opencv官方给出的仿射变换计算仿射变换矩阵的文档的时候,发现官方文档中有个很明显的错误,再次给大家提个醒. 官方文档连接: http://opencv.willowgarage.com/documentation/cpp/imgproc_geometric_image_transformations.html#warpAffine 其中,在说如何计算仿射矩阵的时候, 原文是这样说的: cv::getRotationMatrix2D¶ Comments from the Wiki Ma…
问题描述:已知两幅图像Image1和Image2,计算出两幅图像的重叠区域,并在Image1和Image2标识出重叠区域. 算法思想: 若两幅图像存在重叠区域,则进行图像匹配后,会得到一张完整的全景图,因而可以转换成图像匹配问题. 图像匹配问题,可以融合两幅图像,得到全景图,但无法标识出在原图像的重叠区域. 将两幅图像都理解为多边形,则其重叠区域的计算,相当于求多边形的交集. 通过多边形求交,获取重叠区域的点集,然后利用单应矩阵还原在原始图像的点集信息,从而标识出重叠区域. 算法步骤: 1.图像…
OpenCV 计算图像的直方图 计算图像的直方图是图像处理领域一个非经常见的基本操作. OpenCV 中提供了 calcHist 函数来计算图像直方图.只是这个函数说实话挺难用的,研究了好久才掌握了些主要的使用方法. calcHist 函数 C++ 的函数原型例如以下: void calcHist(const Mat* images, int nimages, const int* channels, InputArray mask, SparseMat& hist, int dims, con…
Paul Viola和Michael Jones在2001年首次将积分图应用在图像特征提取上,在他们的论文"Rapid Object Detection using a Boosted Cascade of Simple Features"中,积分图被当作一种新的图像特征表征方式,可以把检测的Haar特征非常高效的计算出来,用于实时人脸检测系统. 积分图是一种能够描述全局信息的矩阵表示方法,其构造方式是积分图像上位置(i,j)处的值ii(i,j)是原图像(i,j)左上角方向所有像素的和…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合 SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal 在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM…
引自:http://www.xuebuyuan.com/1684976.html http://blog.csdn.net/lichengyu/article/details/38392473 http://www.cnblogs.com/yemeishu/archive/2013/01/19/2867286.html谈谈NITE 2与OpenCV结合提取指尖坐标 一 概念: Convexity hull, Convexity defects 如上图所示,黑色的轮廓线为convexity hul…
(一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思…