uber全球用户每天会产生500万条行程,保证数据的准确性至关重要.如果所有的数据都得到有效利用,t通过元数据和聚合的数据可以快速检测平台上的滥用行为,如垃圾邮件.虚假账户和付款欺诈等.放大正确的数据信号能使检测更精确,也因此更可靠. 为了解决我们和其他系统中的类似挑战,Uber Engineering 和 Databricks 共同向Apache Spark 2.1开发了局部敏感哈希(LSH).LSH是大规模机器学习中常用的随机算法和哈希技术,包括聚类和近似最近邻搜索. 在这篇文章中,我们将讲…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 上一篇(R语言实现︱局部敏感哈希算法(LSH)解决文本机械相似性的问题(一,基本原理))讲解了LSH的基本原理,笔者在想这么牛气冲天的方法在R语言中能不能实现得了呢? 于是在网上搜索了一下,真的发现了一个叫textreuse的包可以实现这样的功能,而且该包较为完整,可以很好地满足要求. 现在的版本是 0.1.3,最近的更新的时间为 2016-0…
搜集了快一个月的资料,虽然不完全懂,但还是先慢慢写着吧,说不定就有思路了呢. 开源的最大好处是会让作者对脏乱臭的代码有羞耻感. 当一个做推荐系统的部门开始重视[数据清理,数据标柱,效果评测,数据统计,数据分析]这些所谓的脏活累活,这样的推荐系统才会有救. 求教GitHub的使用. 简单不等于傻逼. 我为什么说累:我又是一个习惯在聊天中思考前因后果的人,所以整个大脑高负荷运转.不过这样真不好,学习学成傻逼了. 研一的最大收获是让我明白原来以前仰慕的各种国家自然基金项目,原来都是可以浑水摸鱼忽悠过去…
局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异.它的主要作用就是从海量的数据中挖掘出相似的数据,可以具体应用到文本相似度检测.网页搜索等领域. 1. 基本思想 局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后的它们也具有很高…
from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法.局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异.它的主要作用就是从海量的数据中挖掘出相似的数据,可以具体应用到文本相似度检测.网页搜…
LSH是我同学的名字,平时我会亲切的称呼他为离骚,老师好,左移(leftshift),小骚骚之类的,最近他又多了一个新的外号:局部敏感哈希(Locally sensitive hashing). 好了,废话不多说直接转入正题: 『写在前面』局部敏感哈希是一种NOIP禁用的算法(因为使用了随机数),若不感兴趣就无需往下看了. 『什么是LSH?』 LSH就是局部敏感哈希,听着名字就知道和普通的哈希不一样,具体哪里不一样,就先吊吊你的胃口,稍后再说.先来了解LSH的各方面性能: 首先先来思考一个问题:…
需要代码联系作者,不做义务咨询. 一.算法实现 基于p-stable分布,并以‘哈希技术分类’中的分层法为使用方法,就产生了E2LSH算法. E2LSH中的哈希函数定义如下: 其中,v为d维原始数据,a为随机变量,由正态分布产生; w为宽度值,因为a∙v+b得到的是一个实数,如果不加以处理,那么起不到桶的效果,w是E2LSH中最重要的参数,调得过大,数据就被划分到一个桶中去了,过小就起不到局部敏感的效果.b使用均匀分布随机产生,均匀分布的范围在[0,w]. 但是这样,得到的结果是(N1,N2,……
1. 引言 - 近似近邻搜索被提出所在的时代背景和挑战 0x1:从NN(Neighbor Search)说起 ANN的前身技术是NN(Neighbor Search),简单地说,最近邻检索就是根据数据的相似性,从数据集中寻找与目标数据最相似的项目,而这种相似性通常会被量化到空间上数据之间的距离,例如欧几里得距离(Euclidean distance),NN认为数据在空间中的距离越近,则数据之间的相似性越高. 当需要查找离目标数据最近的前k个数据项时,就是k最近邻检索(K-NN). 0x2:NN的…
一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论.因为这只是一篇博文,并不是论文.我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力. 局部敏感哈希,英文locality-sensetive hashing,常简称为LSH.局部敏感哈希在部分中文文献中也会被称做位置敏感哈希.LSH是一种哈希算法,最早在1998年由Indyk在[1]上提出.不同于我们在数据结构教材中对哈希算法的认识,哈希最开始是为了减少冲突方便快速增删改查,在这里LSH恰恰相…
一.引入 在做微博文本挖掘的时候,会发现很多微博是高度相似的,因为大量的微博都是转发其他人的微博,并且没有添加评论,导致很多数据是重复或者高度相似的.这给我们进行数据处理带来很大的困扰,我们得想办法把找出这些相似的微博,再对其进行去重处理. 如果只是要找到重复的微博,我们可以用两两比较所有的微博,对相同的微博值保留一条即可:但这只能在数据量很小的情况下才有可能,当我们有1000万条微博时,需要两两比较的微博有10^6亿(n*(n-1)/2)对,这个计算量是惊人的,即便你用map-reduce,拥…