P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精深. \(iPig\) 在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为 \(n\).当然,一种语言如果字数很多,字典也相应会很大.当时的猪王国国王考虑到如果修一本字典,规模有可能远远超过康熙字典,花费的猪力.物力将难以估量.故考虑再三没有进行这一项劳猪伤财之举.当然,猪王国的文字后来随着…
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有且仅有一行:两个数N.G,用一个空格分开. Output 有且仅有一行:一个数,表示答案除以999911659的余数. Sample Input 4 2 Sample Output 2048 HINT 10%的数据中,1 <= N <= 50:20%的数据中,1 <= N <= 100…
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status][Discuss] Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时…
好吧刚开始以为扩展卢卡斯然后就往上套..结果奇奇怪怪又WA又T...后来才意识到它的因子都是质数...qwq怕不是这就是学知识学傻了.. 题意:$ G^{\Sigma_{d|n} \space C_n^d}\space mod \space 999911659$ 首先发现999911659是个质数,所以根据欧拉定理的推论有 $ G^{\Sigma_{d|n}\space C_n^d} \equiv G^{\Sigma_{d|n}\space C_n^d\space mod \space\phi(…
哇,这道题真的好好,让我这个菜鸡充分体会到卢卡斯和欧拉函数的强大! 先把题意抽象出来!就是计算这个东西. p=999911659是素数,p-1=2*3*4679*35617 所以:这样只要求出然后再快速乘法就行了. 那好,怎么做呢? 有模运算的性质得到  然后就是卢卡斯原理. 先把卢卡斯原理放这里: void init(int mod){ //对mod取余后,一定小于mod,因此把mod的阶乘存起来就够用 f[] = ; ; i <= mod; i++){ f[i] = f[i - ] * i…
[SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k(就是n的所有约数),并且对于每一个k都要用一个组合数算出其情况数(读题:不过具体是哪k分之一.这句话说明我们可以从n中取出任意k个字,所以情况数就是\(C(_n^k)\) )(然后因为我们求的组合数范围有点大,所以需要用卢卡斯定理来求组合数(接下来我们会发现模数其实比较小)).但是这道题目把所有情…
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://www.cnblogs.com/karl07/ */ #include <cstdlib> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using…
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2171  Solved: 904[Submit][Status][Discuss] Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时…
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658}}\) 因数可以\(O(\sqrt n)\)枚举. 分解质因数,\(999911658=2×3×4679×35617\),对这4个模数用lucas跑一遍答案,用crt合并. // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il i…
P2480 [SDOI2010]古代猪文 比较综合的一题 前置:Lucas 定理,crt 求的是: \[g^x\bmod 999911659,\text{其中}x=\sum_{d\mid n}\tbinom{n}{d} \] 由于这个\(999911659\)是质数,肯定于\(g\)互质,所以由欧拉定理很容易证明: \[a^{\varphi(p)}\equiv 1\pmod p\Rightarrow a^{k\bmod \varphi(p)}\equiv a^k\pmod p \] 那么可以得出…