图片人脸检测——OpenCV版(二)】的更多相关文章

图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 往期目录 视频人脸检测——Dlib版(六)OpenCV添加中文(五)图片人脸检测——Dlib版(四)视频人脸检测——OpenCV版(三)图片人脸检测——OpenCV版(二)OpenCV环境搭建(一)更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:…
视频人脸检测是图片人脸检测的高级版本,图片检测详情点击查看我的上一篇<图片人脸检测——OpenCV版(二)> 实现思路: 调用电脑的摄像头,把摄像的信息逐帧分解成图片,基于图片检测标识出人脸的位置,把处理的图片逐帧绘制给用户,用户看到的效果就是视频的人脸检测. 效果预览: 实现步骤 使用OpenCV调用摄像头并展示 获取摄像头: cap = cv2.VideoCapture(0) 参数0表示,获取第一个摄像头. 显示摄像头 逐帧显示,代码如下: while (1): ret, img = ca…
上几篇给大家讲了OpenCV的图片人脸检测,而本文给大家带来的是比OpenCV更加精准的图片人脸检测Dlib库. 点击查看往期: <图片人脸检测——OpenCV版(二)> <视频人脸检测——OpenCV版(三)> dlib与OpenCV对比 识别精准度:Dlib >= OpenCV Dlib更多的人脸识别模型,可以检测脸部68甚至更多的特征点 效果展示 人脸的68个特征点 安装dlib 下载地址:https://pypi.org/simple/dlib/ 选择适合你的版本,本…
往期目录 视频人脸检测--Dlib版(六) OpenCV添加中文(五) 图片人脸检测--Dlib版(四) 视频人脸检测--OpenCV版(三) 图片人脸检测--OpenCV版(二) OpenCV环境搭建(一) 更多更新,欢迎访问我的github:https://github.com/vipstone/faceai 前言 Dlib的人脸识别要比OpenCV精准很多,一个是模型方面的差距,在一方面和OpenCV的定位有关系,OpenCV是一个综合性的视觉处理库,既然这么精准,那就一起赶快来看吧. 视…
图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多张脸识别效果图: 技术实现思路 图片转换成灰色(降低为一维的灰度,减低计算强度) 图片上画矩形 使用训练分类器查找人脸 具体实现代码 图片转换成灰色 使用OpenCV的cvtColor()转换图片颜色,代码如下: import cv2 filepath = "img/xingye-1.jpg&quo…
在opencv中,人脸检测用的是harr或LBP特征,分类算法用的是adaboost算法.这种算法需要提前训练大量的图片,非常耗时,因此opencv已经训练好了,把训练结果存放在一些xml文件里面.在opencv3.0版本中,训练好的文件放在 \build\etc\文件夹下,有两个文件夹haarcascades和lbpcascades,前者存放的是harr特征训练出来的文件,后者存放的是lbp特征训练出来的文件. 人脸检测主要用到的是CascadeClassifier这个类,以及该类下的dete…
这是篇是利用 OpenCV 进行人脸识别的技术讲解.阅读本文之前,这是注意事项: 建议先读一遍本文再跑代码——你需要理解这些代码是干什么的.成功跑一遍不是目的,能够举一反三.在新任务上找出 bug 才是. 请确保用的是 OpenCV v2 你需要一个网络摄像头 OpenCV OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是否存在人脸下结论,而需要成千上万的特征…
前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcnn 将上文已完成预数据处理的目录data移动至face_faster_rcnn目录下, 并在face_faster_rcnn目录下创建face_label.pbtxt文件,内容如下: item { id: 1 name: 'face' } 在已下载的TensorFlow Object Detecti…
上一篇博客里,我们介绍了VJ人脸检测算法的特征,就是基于积分图像的矩形特征,这些矩形特征也被称为Haar like features, 通常来说,一张图像会生成一个远远高于图像维度的特征集,比如一个 24×24 的图像,会生成162336个矩形特征.在实时的人脸检测应用中,不可能把所有的特征都用上,所有需要做特征选择,这篇博客里,我们将要介绍AdaBoost的训练方法和基于AdaBoost的层级分类器. AdaBoost 分类 AdaBoost 可以同时进行特征选择与分类器训练,简单来说,Ada…
项目需求:某市级组织考试,在考试前需审核考生采集表中的考生照片是否合格,由于要审核的考生信息采集表有很多,原先进行的是手动人工审核,比较费时费力,审核的要求也很简单,并不判断考生是否是图片本人(身份验证有另外一套程序来进行),只是看考生采集表中考生头像是否是人脸(是否存在辨识不清楚,不是人脸).因此提出需求,看是否能用程序来检测考生信息采集表中的照片,只需找出来疑似不是人脸的考生所在文档位置(pdf文档)即可,存疑的考生再由人工进行审核. PDF文档中有很多页,每一页都是如图中的结构. 经过百度…
人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下: 多张脸识别效果图: 技术实现思路 图片转换成灰色(去除色彩干扰,让图片识别更准确) 图片上画矩形 使用训练分类器查找人脸 具体实现代码 图片转换成灰色 使用OpenCV的cvtColor()转换图片颜色,代码如下: import cv2 filepath = "img/xingye-1.jpg"…
本节将介绍 Haar 级联分类器,通过对比分析相邻图像区域来判断给定图像或子图像与已知对象是否匹配. 本章将考虑如何将多个  Haar 级联分类器构成一个层次结构,即一个分类器能识别整体区域(如人脸),而其他的分类器可识别小的区域(如鼻子.眼睛和嘴). 1 Haar 级联的概念 图像会因灯光.视角.视距.摄像头抖动以及数字噪声的变化而使得细节变得不稳定.所以提取图像的细节对产生稳定分类结果和跟踪结果很有作用.这些提取的结果被称为特征. 专业的表述为:从图像数据中提取特征.虽然任意像素都可能影响多…
一.实验目的:我这里完成的是,将8张人脸图片(4组,每组两张)存入库中,选取1张图片,程序识别出与其匹配的另一张. 这里介绍分三个步骤完成该工作,①程序读取摄像头.拍照 ②程序从电脑文档中读取图片   ③检测人脸,并用红框框出人脸 ④使用感知哈希算法匹配最相似的图片 二.实验环境: Win 7(x64).visual studio 2010.openCV-2.4.3 使用语言:C++ 三.实验准备:①安装好vs2010,本文不予介绍.   ②配置opencv : 1'进入官网下载http://o…
文章目录: OpenCV安装 安装numpy 安装opencv OpenCV使用 OpenCV测试 效果图: 注意: 图片人脸检测 程序要求: 技术实现思路 注意 本文使用的环境是:Windows+Python3.x+Anaconda 安装Python以及Anaconda的步骤本文不予以讲解了,下面主要讲的是OpenCV的安装以及使用. OpenCV安装 安装numpy 如果没有numpy的话要先下载numpy,一般安装完Anaconda后就会自带很多库,这也是我推荐使用Anaconda的原因.…
1. 简介 这学期的计算机视觉课,我们组的课程项目为“照片自动美化”,其中我负责的模块为人脸检测与自动磨皮.功能为:用户上传一张照片,自动检测并定位出照片中的人脸,将照片中所有的人脸进行“磨皮”处理,使照片得到自动美化.完整代码见于GitHub. 2. 重要步骤 人脸检测 OpenCV样例库中自带的训练结果采用的是Viola-Jones框架,选择了一种类Haar矩形特征,采用Ada-Boost这种自适应上升的算法来选择用于分类的特征并进行分类,最后使用弱分类器级联的架构来实现快速运算.人脸检测使…
前几篇文章中有提到对openCV环境配置,这里再重新梳理导入和使用openCV进行简单的人脸检测(包括使用级联分类器) 一 首先导入openCVLibrary320 二 设置gradle的sdk版本号与当前项目一致 compileSdkVersion 26 buildToolsVersion "26.0.2" defaultConfig { minSdkVersion 14 targetSdkVersion 26 } 三 新建 jniLibs 目录 在 app/src/main 目录下…
读出某一个文件夹下“jpg”后缀的全部图片后,用的OpenCV自带的人脸检测检测图片中的人脸,调整图片的大小写成一个avi视频. 主要是要记录一下CvVideoWriter的用法和如何从文件夹中读取某一后缀的全部文件. 代码: #include "stdafx.h" #include <opencv2\opencv.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/i…
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 如果您看过<三分钟极速体验:Java版人脸检测>一文,甚至动手实际操作过,您应该会对背后的技术细节感兴趣,接下来就请随欣宸一起动手实战,从无到有将这个应用开发出来: 首先确定咱们的目标: 开发出java版的人脸检测应用 将此应用制作成docker镜像 在docker环境运行这个应用…
在网上找到了一个博客,里面有大量内容适合初学者接触和了解人脸检测的博文,正好符合我目前的学习方面,故将链接放上来,后续将分类原博客的博文并加上学习笔记. 传送门: http://blog.sina.com.cn/s/articlelist_1602567857_3_1.html Adaboost算法原理 总的来说这是个算法,也可以说成是一个方法,有具体的流程而且分为多个版本,这个流程将会在完整学习后把最优的版本作为笔记放上来.引用来之其他博客的一句话:“Adaboost 算法是一种用来分类的方法…
文章来自于:http://blog.renren.com/share/246648717/8171467499 基于开源项目OpenCV的人脸识别Demo版整理(不仅可以识别人脸,还可以识别眼睛鼻子嘴等)[模式识别中的翘楚]作者: 王铎 最近对人脸识别的程序非常感兴趣,但是苦于没有选修多媒体方向,看了几篇关于人脸识别的论文,大概也没看懂多少,什么灰度处理啊,切割识别啊,云里雾里,傻傻看不明白啊.各种苦恼. 于是就在网上找找,看有木有神马开源代码啊,要是有个现成的源码就更好了,百度it ,那些源码…
这两天在初学目标检测的算法及步骤,其中人脸检测作为最经典的算法,于是进行了重点研究.该算法最重要的是建立人脸检测分类器,因此我用了一天的时间来学习分类器的训练.这方面的资料很多,但是能按照一个资料运行出结果的确实没有找到,因此我总结了自己的训练经验. 目标检测分为三个步骤: 1.样本的创建 2.训练分类器 3.利用训练的分类器进行目标检测 第一步:样本的创建 ◆     样本分两种: 正样本与负样本(也有人翻译成:正例样本和反例样本),其中正样本是指待检目标样本(例如人脸,汽车,鼻子等),负样本…
全文转载自CSDN的博客(不知道怎么将CSDN的博客转到博客园,应该没这功能吧,所以直接复制全文了),转载地址如下 http://blog.csdn.net/lsq2902101015/article/details/47057081 本篇文章主要介绍了如何使用OpenCV实现人脸检测.本文不具体讲解人脸检测的原理,直接使用OpenCV实现. OpenCV版本:2.4.10:VS开发版本:VS2012. 一.OpenCV人脸检测 要实现人脸识别功能,首先要进行人脸检测,判断出图片中人脸的位置,才…
年会签到,拍自己的大头照,有的人可能会拍成横向的,需要旋转,用人脸检测并修正它(图片). 1. 无脑检测步骤为: 1. opencv 读取图片,灰度转换 2. 使用CascadeClassifier()通过训练数据训练分类器 3. detectMultiScale()检测人脸 训练数据集下最基本的人脸haarcascade_frontalface_default.xml 2. 开始检测 1) 斜脸检测失败 用了一张逃避可耻但有用剧照,不知是gakki脸斜还是不清晰的缘故,face_cascade…
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法. Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Sequential式.Model式)解读(二) 3.keras系列︱图像…
PYTHON ubuntu16.04 默认安装的Python版本2.7.12,当用pip install opencv-python 安装了opencv for python 3.3.0.10后,运行命令 python -c "import cv2;cap=cv2.VideoCapture(0);print(cv2.isOpened())" 输出为false 经过各种百度,安装其他包文件也没有解决问题. 索性回头运行命令:pip uninstall opencv-python,卸载op…
开发配置 OpenCV的例程中已经带有了人脸检测的例程,位置在:OpenCV\samples\facedetect.cpp文件,OpenCV的安装与这个例子的测试可以参考我之前的博文Linux 下编译安装OpenCV. 网上能够找到关于OpenCV人脸检测的例子也比较多,大多也都是基于这个例程来更改,只是多数使用的是OpenCV 1.0的版本,而OpenCV2.0以后由于模块结构的更改,很多人并没有将例程运行起来.如果是新版的OpenCV跑旧的例程,编译运行出错的话,需要确保: #include…
OpenCV实现人脸检测(转载)  原文链接:https://www.cnblogs.com/mengdd/archive/2012/08/01/2619043.html 本文介绍最基本的用OpenCV实现人脸检测的方法. 一.人脸检测算法原理 Viola-Jones人脸检测方法 参考文献:Paul Viola, Michael J. Jones. Robust Real-Time Face Detection[J]. International Journal of Computer Visi…
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 检测照片中的人脸,用Java可以实现吗? 当然可以,今天咱们用最少的时间.最简单的操作来体验这个实用的功能,当您提交一张带有人脸的照片后,会看到下图效果,所有人脸都被识别到并被框选出来了: 本篇以体验为主,不涉及具体的开发,后面还会有文章介绍完整的开发过程(包括源码) 风险提前告知…
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS等: 本篇概览 如果您看过<三分钟极速体验:Java版人脸检测>一文,甚至动手实际操作过,您应该会对背后的技术细节感兴趣,开发这样一个应用,咱们总共要做以下三件事: 准备好docker基础镜像 开发java应用 将java应用打包成package文件,集成到基础镜像中,得到最终的java应用镜像…
一.概述 案例:使用opencv级联分类器CascadeClassifier+其提供的特征数据实现人脸检测,检测到人脸后使用红框画出来. API介绍:detectMultiScale( InputArray image, CV_OUT std::vector<Rect>& objects,double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0, Size minSize = Size(), Size maxSize =…