Inferring Analogous Attributes     CVPR  2014 Chao-Yeh Chen and Kristen Grauman Abstract: The appearance of an attribute can vary considerably from class to class (e.g., a “fluffy” dog vs. a “fluffy” towel), making standard class-independent attribut…
Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik 引用: Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation…
Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov 引用: Erhan, Dumitru, et al. "Scalable object detection using deep neural networks." Proceedings of the IEEE Confere…
编者按:2014年度计算机视觉方向的顶级会议CVPR上月落下帷幕.在这次大会中,微软亚洲研究院共有15篇论文入选.今年的CVPR上有哪些让人眼前一亮的研究,又反映出哪些趋势?来听赴美参加会议的微软亚洲研究院实习生胡哲的所见所闻. 作者:胡哲 微软亚洲研究院实习生 计算机视觉(Computer Vision)是近十几年来计算机科学中最热门的方向之一,而国际计算机视觉与模式识别大会(Conference on Computer Vision and Pattern Recognition,简称CVP…
2014看计算机视觉领域的最新热点" title="从CVPR 2014看计算机视觉领域的最新热点"> 编者按:2014年度计算机视觉方向的顶级会议CVPR上月落下帷幕.在这次大会中,微软亚洲研究院共有15篇论文入选.今年的CVPR上有哪些让人眼前一亮的研究,又反映出哪些趋势?来听赴美参加会议的微软亚洲研究院实习生胡哲的所见所闻. 作者:胡哲 微软亚洲研究院实习生 计算机视觉(Computer Vision)是近十几年来计算机科学中最热门的方向之一,而国际计算机视觉与模…
Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新点和贡献 方法细节 实验结果 问题讨论 总结与收获点 参考文献 作者和相关链接 作者 白翔个人主页 论文下载 方法概括  Step 1: 用修改版的hed(参考文献1)得到text region map(binary), character map(binary), linking orientat…
学习语义分割反卷积网络DeconvNet 一点想法:反卷积网络就是基于FCN改进了上采样层,用到了反池化和反卷积操作,参数量2亿多,非常大,segnet把两个全连接层去掉,效果也能很好,显著减少了参数,只有290万,提升了性能 摘要 提出了一个创新的语义分割算法,反卷积网络.网络前几层用VGG16的结构.反卷积网络由反卷积层和反池化层组成,他们来实现像素级别的语义分割.我们把网络应用于输入图像得到每个结果,再将所有结果组合起来构成最终的语义分割图.这个方法可以降低现有的基于组合深度卷积网络和类别…
论文原址:https://arxiv.org/abs/1708.02002 github代码:https://github.com/fizyr/keras-retinanet 摘要 目前,具有较高准确率的检测器基于双阶段的目标检测算法实现,单阶段通过对可能存在的位置进行密集的采样操作,一定程度上要比双阶段的方法要更简单快速,但是准确率会有所损失.在进行训练时,前景与背景二者之间较大的类别不平衡是产生上述问题的原因.针对上述问题,本文对常规的损失函数进行修改,降低易分类样本产生的损失的贡献度.本文…
这篇文章目前发表在arxiv,日期:20180309. 这是一篇针对多种综合性信息的视觉显著性检测的综述文章. 注:有些名词直接贴原文,是因为不翻译更容易理解.也不会逐字逐句都翻译,重要的肯定不会错过^_^.我们的目的是理解文章思想,而不是为了翻译而纯粹翻译.翻译得不好,敬请包涵~ 欢迎同道中人QQ交流:1505543113 abstract: 随着采集技术( acquisition technology)的发展,许多综合性信息(comprehensive information)诸如depth…
论文源址:https://arxiv.org/abs/1811.12030 开源代码:未公开 摘要 本文提出了目标检测网络Grid R-CNN,其基于网格定位机制实现准确的目标检测.传统方法主要基于回归操作,Grid R-CNN则捕捉详细的空间信息,同时具有全卷积结构中对位置信息的敏感性.[ Instead of using only two independent points]是指CornerNet预测的不准确性.Grid R-CNN使用多点监督,用于编码更多的细节信息,同时降低了不准确的特…