A+B problem (High-precision)】的更多相关文章

Problem of Precision [题目链接]Problem of Precision [题目类型]矩阵 &题解: 参考:点这里 这题做的好玄啊,最后要添加一项,之后约等于,但是有double的时候一定不能取余,还是要记住的 &代码: #include <cstdio> #include <iostream> #include <set> #include <cmath> #include <cstring> #inclu…
Problem of Precision Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 686    Accepted Submission(s): 386 Problem Description   Input The first line of input gives the number of cases, T. T test c…
Problem of Precision Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1375    Accepted Submission(s): 826 Problem Description Input The first line of input gives the number of cases, T. T test ca…
题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5+2√6)n+(5-2√6)n是一个整数(2√6的偶数次幂总会正负抵消掉),并且(5-2√6)n是小于1的.所以我们就只需要求出Sn-1即可.令 An=(5+2√6)n;  Bn=(5-2√6)n. Sn=An+Bn     Sn为整数. Sn*((5+2√6)+(5-2√6))=Sn*10 Sn*…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2256 最重要的是构建递推式,下面的图是盗来的.貌似这种叫共轭数. #include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> using namespace std; ; struct data { ][]; data()…
http://acm.hdu.edu.cn/showproblem.php?pid=2256 题意:给定 n    求解   ? 思路: , 令  , 那么 , 得: 得转移矩阵: 但是上面求出来的并不是结果,并不是整数.需要加上, 由于 所以结果为 #pragma comment(linker, "/STACK:1024000000,1024000000") #include<bits/stdc++.h> using namespace std; #define rep0…
点击打开hdu 2256 思路: 矩阵快速幂 分析: 1 题目要求的是(sqrt(2)+sqrt(3))^2n %1024向下取整的值 3 这里很多人会直接认为结果等于(an+bn*sqrt(6))%1024,但是这种结果是错的,因为这边涉及到了double,必然会有误差,所以根double有关的取模都是错误的思路 代码: /************************************************ * By: chenguolin * * Date: 2013-08-23…
题目地址:HDU 2256 思路: (sqrt(2)+sqrt(3))^2*n=(5+2*sqrt(6))^n; 这时要注意到(5+2*sqrt(6))^n总能够表示成an+bn*sqrt(6); an+bn*(sqrt(6))=(5+2*sqrt(6))*(a(n-1)+b(n-1)*sqrt(6)) =(5*a(n-1)+12*b(n-1))+(2*a(n-1)+5*b(n-1))*sqrt(6); 显然,an=5*a(n-1)+12*b(n-1);bn=2*a(n-1)+5*b(n-1);…
链接:传送门 题意:求式子的值,并向下取整 思路: 然后使用矩阵快速幂进行求解 balabala:这道题主要是怎么将目标公式进行化简,化简到一个可以使用现有知识进行解决的一个过程!菜的扣脚...... 还是蒟蒻 /************************************************************************* > File Name: hdu2256.cpp > Author: WArobot > Blog: http://www.cnb…
http://acm.hdu.edu.cn/showproblem.php?pid=5451 题意:给定x    求解 思路: 由斐波那契数列的两种表示方法, 之后可以转化为 线性表示 F[n] = F[n-1] + F[n-2] ; 同时可以看出   和 是 一元二次方程的两根, a  = 1, b = -1 又是之后递推式的系数: 同理这里需要构造出两根为 和 ,这时 a = 1, b = –10 得 F[n] = 10F[n-1] – F[n-2]; (当然可以直接打表递推出关系式) 如果…