基于模型的强化学习方法数据效率高,前景可观.本文提出了一种基于模型的元策略强化学习方法,实践证明,该方法比以前基于模型的方法更能够应对模型缺陷,还能取得与无模型方法相近的性能. 引言 强化学习领域近期取得的很多成就都是通过无模型强化学习算法 [1,2,3] 实现的.无模型(MF)算法倾向于实现最佳性能,通常可应用且易于实现. 然而,这是以数据密集为代价实现的,当与诸如神经网络的大容量函数近似器结合时,情况会恶化.它们的高样本复杂性阻碍其应用于机器人控制任务,在这些任务上收集数据代价高昂. 相比之…
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Based RL),以及基于模型的强化学习算法框架Dyna. 本篇主要参考了UCL强化学习课程的第8讲和Dyna-2的论文. 1. 基于模型的强化学习简介 基于价值的强化学习模型和基于策略的强化学习模型都不是基于模型的,它们从价值函数,策略函数中直接去学习,不用学习环境的状态转化概率模型,即在状态$s$下采…
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal translation for the tutorial written and posted by Arthur Juliani on Medium.com. And my work is completely based on aim of sharing knowledges and welco…
谷歌重磅开源强化学习框架Dopamine吊打OpenAI 近日OpenAI在Dota 2上的表现,让强化学习又火了一把,但是 OpenAI 的强化学习训练环境 OpenAI Gym 却屡遭抱怨,比如不太稳定.更新不够及时等.今日,谷歌推出了一款全新的开源强化学习框架 Dopamine,该框架基于 TensorFlow,主打灵活性.稳定性.复现性,能够提供快速的基准测试. 配套开源的还包括一个专用于视频游戏训练结果的平台,以及四种不同的机器学习模型:DQN.C51.简化版的 Rainbow 智能体…
http://lib.csdn.net/article/aimachinelearning/68113 原文地址:http://blog.csdn.net/jinzhuojun/article/details/77144590 和其它的机器学习方向一样,强化学习(Reinforcement Learning)也有一些经典的实验场景,像Mountain-Car,Cart-Pole等.话说很久以前,因为没有统一的开发测试平台,大家都会自己实现,有用C/C++的,有用Python,还有用Matlab的…
CUDA上深度学习模型量化的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参数都用诸如int8和float16低精度数据类型表示.降低的数据带宽减少了推理时间和存储器/存储要求,以及功耗.在适当的量化方案下,可以最小化量化模型的精度下降.因此,量化模型特别适合研究人员和开发人员,使大型模型适合在各种设备(例如GPU,CPU和移动设备)上部署. 通常通过手工微内核,针对不同的工…
http://www.matlabsky.com/thread-38774-1-1.html 本文转载于MathWorks中国高级工程师董淑成的帖子内容.为了方便阅读,对原文进行了重新整理编辑. 之前有网友引发了一些讨论,为了方便大家进一步讨论,专门开贴,讨论基于模型的设计.题目有点大,以我的个人经历,我只能说说基于模型的嵌入式软件设计,我先抛砖引玉吧. 先胡乱问几个大问题: 什么叫基于模型的设计? 为什么要基于模型的设计? 基于模型的设计过程中,需要做什么事情? 再问几个小问题: 模型验证是否…
论文提出MetaQNN,基于Q-Learning的神经网络架构搜索,将优化视觉缩小到单层上,相对于Google Brain的NAS方法着眼与整个网络进行优化,虽然准确率差了2-3%,但搜索过程要简单地多,所以才能仅用100GPU days就可以完成搜索,加速240倍.论文本身是个很初期的想法,可以看到搜索出来的网络结构还是比较简单的,也需要挺多的人工约束.整体而言,论文的输出的搜索思想还是很重要的,有很多参考的地方   来源:晓飞的算法工程笔记 公众号 论文: Designing Neural…
为了优化进化算法在神经网络结构搜索时候选网络训练过长的问题,参考ENAS和NSGA-III,论文提出连续进化结构搜索方法(continuous evolution architecture search, CARS),最大化利用学习到的知识,如上一轮进化的结构和参数.首先构造用于参数共享的超网,从超网中产生子网,然后使用None-dominated排序策略来选择不同大小的优秀网络,整体耗时仅需要0.5 GPU day   来源:晓飞的算法工程笔记 公众号 论文: CARS: Continuous…
论文提出aging evolution,一个锦标赛选择的变种来优化进化算法,在NASNet搜索空间上,对比强化学习和随机搜索,该算法足够简洁,而且能够更快地搜索到更高质量的模型,论文搜索出的AmoebaNet-A在ImageNet上能达到SOTA   来源:[晓飞的算法工程笔记] 公众号 论文: Regularized Evolution for Image Classifier Architecture Search 论文地址:https://arxiv.org/abs/1802.01548…