特征工程(Feature Engineering)】的更多相关文章

一.什么是特征工程? "Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models, resulting in improved model accuracy on unseen data." 简而言之,就是将原始数据转换为模型更容易理解的数据类型,从而提高模型…
概述:上节咱们说了特征工程是机器学习的一个核心内容.然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些方法技巧.但是光会前面的一些内容,还不足以应付实际的工作中的很多情况,例如如果咱们的原始数据的features太多,咱们应该选择那些features作为咱们训练的features?或者咱们的features太少了,咱们能不能利用现有的features再创造出一些新的与咱们的target有更加紧密联系…
 最近学习特征工程(Feature Enginnering)的相关技术,主要包含两块:特征选取(Feature Selection)和特征抓取(Feature Extraction).这里记录一些要点,作为备忘.   特征选取 R中的FSelector包实现了一些特征选取的算法,主要分两大类:   Algorithms for filtering attributes: cfs, chi.squared, information.gain, gain.ratio, symmetrical.unc…
学习框架 特征工程(Feature Engineering) 数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已 什么是特征工程: 帮助我们使得算法性能更好发挥性能而已 sklearn主要用于特征工程pandas主要用于数据清洗.数据处理 特征工程包含如下3个内容: 1.特征抽取/特征提取 |__>字典特征抽取,应用DiceVectorizer实现对类别特征进行数值化.离散化 |__>文本特征抽取,应用CounterVertorize/TfIdfVectorize实现对文本特征数…
原文:http://dataunion.org/20276.html 作者:JasonDing1354 引言 在之前学习机器学习技术中,很少关注特征工程(Feature Engineering),然而,单纯学习机器学习的算法流程,可能仍然不会使用这些算法,尤其是应用到实际问题的时候,常常不知道怎么提取特征来建模. 特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的. 特征工程的重要意义 数据特征会直接影响你使用的预测模型和实现的预测结果.准备和选择的特征越好,则实现的结果越好. 影响预测结…
作者:韩信子@ShowMeAI 机器学习实战系列:https://www.showmeai.tech/tutorials/41 本文地址:https://www.showmeai.tech/article-detail/328 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 特征工程(feature engineering)指的是:利用领域知识和现有数据,创造出新的特征,用于机器学习算法. 特征:数据中抽取出来的对结果预测有用的信息. 特征工程:使用专业背景…
本文转载自使用sklearn做单机特征工程 目录 目录 特征工程是什么 数据预处理 1 无量纲化 11 标准化 12 区间缩放法 13 标准化与归一化的区别 2 对定量特征二值化 3 对定性特征哑编码 4 缺失值计算 5 数据变换 6 回顾 特征选择 1 Filter 11 方差选择法 12 相关系数法 13 卡方检验 2 Wrapper 21 递归特征消除法 3 Embedded 31 基于惩罚项的特征选择法 32 基于树模型的特征选择法 4 回顾 降维 1 主成分分析法PCA 2 线性判别分…
本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26 新智元 1新智元编译   来源:ThingsExpo.Medium 作者:Natalia Ponomareva.Gokula Krishnan Santhanam 整理&编译:刘小芹.李静怡.胡祥杰 新智元日前宣布,获6家顶级机构总额达数千万元的PreA轮融资,蓝驰创投领投,红杉资本中国基金.高瓴智…
“特征工程”这个华丽的术语,它以尽可能容易地使模型达到良好性能的方式,来确保你的预测因子被编码到模型中.例如,如果你有一个日期字段作为一个预测因子,并且它在周末与平日的响应上有着很大的不同,那么以这种方式编码日期,它更容易取得好的效果. 但是,这取决于许多方面. 首先,它是依赖模型的.例如,如果类边界是一个对角线,那么树可能会在分类数据集上遇到麻烦,因为分类边界使用的是数据的正交分解(斜树除外). 其次,预测编码过程从问题的特定学科知识中受益最大.在我刚才列举的例子中,你需要了解数据模式,然后改…
from http://breezedeus.github.io/2014/11/15/breezedeus-feature-processing.html 请您移步原文观看,本文只供自己学习使用 连续(continuous)特征: 无序类别(categorical)特征: 有序类别(ordinal)特征. 特征工程(Feature Engineering)经常被说为机器学习中的black art,这里面包含了很多不可言说的方面.怎么处理好特征,最重要的当然还是对要解决问题的了解.但是,它其实也…
好了,大家现在进入到机器学习中的一块核心部分了,那就是特征工程,洋文叫做Feature Engineering.实际在机器学习的应用中,真正用于算法的结构分析和部署的工作只占很少的一部分,相反,用于特征工程的时间基本都占70%以上,因为是实际的工作中,绝大部分的数据都是非标数据.因而这一块的内容是非常重要和必要的,如果想要提高机器学习应用开发的效率,feature engineering就像一把钥匙,一个加速器,能给整个项目带来事半功倍的效果.另外,feature engineering做的好不…
一.概述 Andrew Ng:Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering( 吴恩达, 人工智能和机器学习领域国际最权威学者之一:提取特征是困难的,耗时的,需要丰富的专家知识."应用机器学习"从根本上来说就是特征工程) 业界广泛流传:…
Alink漫谈(十) :特征工程之特征哈希/标准化缩放 目录 Alink漫谈(十) :特征工程之特征哈希/标准化缩放 0x00 摘要 0x01 相关概念 1.1 特征工程 1.2 特征缩放(Scaling) 1.3 特征哈希(Hashing Trick) 0x02 数据集 0x03 示例代码 0x04 标准化缩放 StandardScaler 4.1 StandardScalerTrainBatchOp 4.2 StatisticsHelper.summary 4.3 BuildStandard…
原文链接:https://developers.google.com/machine-learning/crash-course/feature-crosses/ 特征组合是指两个或多个特征相乘形成的合成特征.特征的相乘组合可以提供超出这些特征单独能够提供的预测能力. 1- 对非线性规律进行编码 特征组合是指通过将两个或多个输入特征相乘来对特征空间中的非线性规律进行编码的合成特征.通过创建一个特征组合可以解决非线性问题. 特征组合的种类 可以创建很多不同种类的特征组合.例如: [A X B]:将…
特征处理是特征工程的核心部分,特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样式确定的步骤,更多的是工程上的经验和权衡,因此没有统一的方法,但是sklearn提供了较为完整的特征处理方法,包括数据预处理,特征选择,降维等.首次接触到sklearn,通常会被其丰富且方便的算法模型库吸引,但是这里介绍的特征处理库也非常强大! 经过前人的总结,特征工程已经形成了接近标准化的流程,如下图所示(此图来自此网友,若侵权,联系我,必删除) 1 特征来源——导入数据 在做数据分析的时候,特征…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 项目合作QQ:231469242 变量筛选:(逻辑回归) 好处: 变量少,模型运行速度快,更容易解读和理解 坏处: 会牺牲掉少量精确性 变量不筛选:(r…
1. 引言 个人以为,机器学习是朝着更高的易用性.更低的技术门槛.更敏捷的开发成本的方向去发展,且Auto-ML或者Auto-DL的发展无疑是最好的证明.因此花费一些时间学习了解了Auto-ML领域的一些知识,并对Auto-ML中的技术方案进行归纳整理. 众所周知,一个完整的机器学习项目可概括为如下四个步骤. 其中,特征工程(提取)往往是决定模型性能的最关键一步.而往往机器学习中最耗时的部分也正是特性工程和超参数调优.因此,许多模型由于时间限制而过早地从实验阶段转移到生产阶段从而导致并不是最优的…
博主在之前的博客 Kaggle:Home Credit Default Risk 数据探索及可视化(1) 中介绍了 Home Credit Default Risk 竞赛中一个优秀 kernel 关于数据的探索及可视化的工作,本篇博客将围绕如何构建特征工程展开叙述,原文链接地址:Start Here: A Gentle Introduction 1 简介 特征工程是指一个基因过程,可以涉及特征构建:从现有数据中添加新特征和特征选择:仅选择最重要的特征或其他降维方法.我们可以使用许多技术来创建特征…
转自http://blog.csdn.net/han_xiaoyang/article/details/50481967 1. 引言 再过一个月就是春节,相信有很多码农就要准备欢天喜地地回家过(xiang)年(qin)了.我们今天也打算讲一个相亲的故事. 讲机器学习为什么要讲相亲?被讨论群里的小伙伴催着相亲,哦不,催着讲特征工程紧啊.只是我们不太敢讲这么复杂高深的东西,毕竟工程实践的经验太复杂了,没有统一的好解释的理论,一般的教材讲这方面的内容不多.我们就打算以一个相亲的故事为例,串一些特征工程…
文档:https://docs.featuretools.com/#minute-quick-start 所谓自动特征工程,即是将人工特征工程的过程自动化.以 featuretools 为代表的自动特征工程在整个机器学习的端到端实践中扮演的角色如下图所示: 1. demo 导入包:import featuretools as ft 加载数据:data = ft.demo.load_mock_customer(),data 为 dict 类型 data.keys() ⇒ dict_keys(['t…
机器学习的模型训练越来越自动化,但特征工程还是一个漫长的手动过程,依赖于专业的领域知识,直觉和数据处理.而特征选取恰恰是机器学习重要的先期步骤,虽然不如模型训练那样能产生直接可用的结果.本文作者将使用Python的featuretools库进行自动化特征工程的示例. 机器学习越来越多地从手动设计模型转变为使用H20,TPOT和auto-sklearn等工具来自动优化的渠道.这些库以及随机搜索等方法旨在通过查找数据集的最优模型来简化模型选择和转变机器学习的部分,几乎不需要人工干预.然而,特征工程几…
目录 Representation Feature Engineering Mapping Raw Data to Features Mapping numeric values Mapping categorical values Sparse Representation Glossay Qualities of Good Features Avoid rarely used discrete feature values Prefer clear and obvious meanings…
1. 从朴素贝叶斯在医疗诊断中的迷思说起 这个模型最早被应用于医疗诊断,其中,类变量的不同值用于表示患者可能患的不同疾病.证据变量用于表示不同症状.化验结果等.在简单的疾病诊断上,朴素贝叶斯模型确实发挥了很好的作用,甚至比人类专家的诊断结果都要好.但是在更深度的应用中,医生发现,对于更复杂(由多种致病原因和症状共同表现)的疾病,模型表现的并不好. 数据科学家经过分析认为,出现这种现象的原因在于:模型做了集中通常并不真实的强假设,例如: 一个患者至多可能患一种疾病 在已知患者的疾病条件下,不同症状…
首先,弄清楚三个相似但是不同的任务: feature extraction and feature engineering: 将原始数据转换为特征,以适合建模. feature transformation: 对数据的转换以提高算法的精度. feature selection: 删除不必要的特征. 1 Feature Extraction 1.1 Text 1.1.1 Bag of Words 最简单的方法是 Bag of Words,首先有一个词典包含了文本中出现的所有的词,每个句子文本的表示…
任何参与过机器学习比赛的人,都能深深体会特征工程在构建机器学习模型中的重要性,它决定了你在比赛排行榜中的位置. 特征工程具有强大的潜力,但是手动操作是个缓慢且艰巨的过程.Prateek Joshi,是一名数据科学家,花了不少时间研究多种特征,并从不同角度分析其可行性. 现在,整个特征工程过程可实现自动化,他将通过这篇文章进行详细介绍. 下面会使用Python特征工程库Featuretools来实现这个任务.在讨论之前,我们先介绍特征工程的基本组成,再用直观例子来理解它们,最后把自动特征工程应用到…
一般在machine learning意义上,我们常说的feature,是一种对数据的表达.当然,要衡量一种feature是否是合适的表达,要根据数据,应用,ML的模型,方法....很多方面来看.一般来说,Feature应该是informative(富有信息量),discriminative(有区分性)和independent(独立)的.那么具体怎么选择feature,其实一直是一个开放的问题.在机器学习里面,feature的选择是至关重要的:对于同一种学习的模型,同样的学习方法,同样的数据,选…
以下是Coursera上的How to Win a Data Science Competition: Learn from Top Kagglers课程笔记. Statistics and distance based features 该部分专注于此高级特征工程:计算由另一个分组的一个特征的各种统计数据和从给定点的邻域分析得到的特征. groupby and nearest neighbor methods 例子:这里有一些CTR任务的数据 我们可以暗示广告有 页面上的最低价格将吸引大部分注…
Mean encodings 以下是Coursera上的How to Win a Data Science Competition: Learn from Top Kagglers课程笔记. 学习目标 Regularize mean encodings Extend mean encodings Summarize the concept of mean encodings Concept of mean encoding 均值编码是一种非常强大的技术,它有很多名字,例如:likelihood…
一.Standardization 方法一:StandardScaler from sklearn.preprocessing import StandardScaler sds = StandardScaler() sds.fit(x_train) x_train_sds = sds.transform(x_train) x_test_sds = sds.transform(x_test) 方法二:MinMaxScaler  特征缩放至特定范围 , default=(0, 1) from sk…
零.机器学习整个实现过程: 一.机器学习数据组成 特征值: 目标值: 二.特征工程和文本特征提取 1.概要: 1.特征工程是什么 2.特征工程的意义:直接影响预测结果 3.scikit-learn库 介绍 4.数据的特征抽取 5.数据的特征预处理 6.数据的降维 [特征工程]:特征工程是将原始数据转换为更好地代表预测模型的潜在问题的特征的过程,从而提高了对未知数据的预测准确性 (如图:文章转为数据即是一个特征工程) 2.特征工程工具: 1.pandas:一个数据读取非常方便以及基本的处理格式的工…