最短路算法 (bellman-Ford算法)】的更多相关文章

---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段:       (1)初始化:将除源点…
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运…
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, s…
Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 7990 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe…
1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 k 是通的,就将 j 到 k 的值更新为 M[j][i] + M[i][k] 和 M[j][k] 较短的一个. <<; ; i <= n; i++) { ; j <= n; j++) { ; k <= n; k++) { if (j!=k) { M[j][k] = min(M[…
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能更新点的权值,则说明有负环的存在. #include <stdio.h> #include <string.h> #define min(a,b) (a)<(b)?(a):(b) const int N = 10005; const int INF = 0x3f3f3f3f; i…
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所有边进行松弛,一共对所有边松弛n-1次,判断是否有负权 Floyd 无负权 依次对所有点(的所有边进行松弛),直到完成对所有点的操作…
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是非常好理解的.理解透自己多默写几次就可以记住,机试时基本的工作往往就是高速构造邻接矩阵了. 对于平时的练习,一个非常厉害的 ACMer  @BenLin_BLY 说:"刷水题能够加快我们编程的速度,做经典则能够让我们触类旁通,初期假设遇见非常多编不出.最好还是就写伪代码,理思路.在纸上进行总体分析和…
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点E条边. 该算法主要流程是: 初始化.到起点s的距离distTo[s]设置为0,其余顶点的dist[]设置为正无穷: 以任意次序放松图中的所有E条边,重复V轮: V轮放松结束后,判断是否存在负权回路.如果存在,最短路径没有意义. 根据流程可以给出代码,如下 package Chap7; import…
Dijkstra算法 分析 Dijkstra算法适用于边权为正的情况.它可用于计算正权图上的单源最短路( Single-Source Shortest Paths, SSSP) , 即从单个源点出发, 到所有结点的最短路(这样最后返回你想要的那个节点对应的距离即可). 该算法同时适用于有向图和无向图. 其伪代码如下: 清除所有点的标号 设d[0]=0, 其他d[i]=INF //INF被定义为一个很大的数字 循环n次 { 在所有未标号结点中, 选出d值最小的结点x 给结点x标记 对于从x出发的所…