1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大多数现象.而且因为线性模型本质上是均值预测,而大部分事物的变化都只是围绕着均值而波动,即大数定理. 事物发展的混沌的线性过程中中存在着某种必然的联结.事物的起点,过程,高潮,衰退是一个能被推演的过程.但是其中也包含了大量的偶然性因素,很难被准确的预策,只有一个大概的近似范围.但是从另一方面来说,偶然…
最近一直在回顾linear regression model和logistic regression model,但对其中的一些问题都很疑惑不解,知道我看到广义线性模型即Generalized Linear Model后才恍然大悟原来这些模型是这样推导的,在这里与诸位分享一下,具体更多细节可以参考Andrew Ng的课程. 一.指数分布 广义线性模型都是由指数分布出发来推导的,所以在介绍GLM之前先讲讲什么是指数分布.指数分布的形式如下: η是参数,T(y)是y的充分统计量,即T(y)可以完全表…
广义线性模型(Generalized Linear Model) http://www.cnblogs.com/sumai 1.指数分布族 我们在建模的时候,关心的目标变量Y可能服从很多种分布.像线性回归,我们会假设目标变量Y服从正态分布,而逻辑回归,则假设服从伯努利分布.在广义线性模型的理论框架中,则假设目标变量Y则是服从指数分布族,正态分布和伯努利分布都属于指数分布族,因此线性回归和逻辑回归可以看作是广义线性模型的特例.那什么是指数分布族呢?若一个分布的概率密度或者概率分布可以写成这个形式,…
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底搞懂,看paper看代码的时候总是一脸懵逼. 大部分分布都能看作是指数族分布,广义差不多是这个意思,我们常见的线性回归和logistic回归都是广义线性回归的特例,可以由它推到出来. 参考:线性回归.logistic回归.广义线性模型——斯坦福CS229机器学习个人总结(一) 对着上面的教程,手写了…
1. 基本形式 给定由$d$个属性描述的示例 $\textbf{x} =(x_1;x_2;...,x_n)$,其中$x_i$是$x$在第$i$个属性上的取值,线性模型(linear model)试图学习一个通过属性的线性组合来进行预测的函数,即 $f(\textbf{x}) = \theta_0+\theta_1x_1+\theta_2x_2 +...+\theta_nx_n$    (1) 这里为了计算方便,我们添加$x_0=0$, 则向量形式则为 $f(\textbf{x}) = \Thet…
Here is the note for lecture three. the linear model Linear model is a basic and important model in machine learning. 1. input representation     The data we get usually needs some changes, most of them is the input data.      In linear model,       …
之前,我们讲解了bootstrap tab的使用,今天我们来了解下bootstrap 中model弹出窗的使用. 效果: 代码:<input id="btntext" type="button" value="添加文本组件" data-toggle="modal" data-target="#myModal"  href="../SysManage/ZuJianManage.aspx&quo…
Generic recipe for data analysis with general linear model Courtesy of David Schneider State population, and conditions for taking sample. Construct the model: (a) state the response variable; (b) state the explanatory variable(s); (c) state type of…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由信姜缘 发表于云+社区专栏 介绍 机器学习是计算机科学.人工智能和统计学的研究领域.机器学习的重点是训练算法以学习模式并根据数据进行预测.机器学习特别有价值,因为它让我们可以使用计算机来自动化决策过程. 在本教程中,您将使用Scikit-learn(Python的机器学习工具)在Python中实现一个简单的机器学习算法.您将使用Naive Bayes(NB)分类器,结合乳腺癌肿瘤信息数据库,预测肿瘤是恶性还是良性. 在本教程结束时…
Adaboost原理 Adaboost(AdaptiveBoosting)是一种迭代算法,通过对训练集不断训练弱分类器,然后把这些弱分类器集合起来,构成强分类器.adaboost算法训练的过程中,初始化所有训练样例的具有相同的权值重,在此样本分布下训练出一个弱分类器,针对错分样本加大对其对应的权值,分类正确的样本降低其权值,使前一步被错分的样本得到突显,获得新的样本分布,在新的样本分布下,再次对样本进行训练,又得到一个分类器.依次循环,得到T个分类器,将这些分类器按照一定的权值组合,得到最终的强…