TVM相关】的更多相关文章

首先给出一个TVM 相关的介绍,这个是Tianqi Chen演讲在OSDI18上用的PPThttps://files.cnblogs.com/files/jourluohua/Tianqi-Chen-TVM-Stack-Overview.rar 对于图优化来说,位于整个软件编译栈比较高的层次: 首先给出计算图的定义 Computational graphs: a common way to represent programs in deep learning frameworks 对于图优化来…
因为要添加的设备是一种类似于GPU的加速卡,TVM中提供了对GPU编译器的各种支持,有openCl,OpenGL和CUDA等,这里我们选取比较熟悉的CUDA进行模仿生成.从总体上来看,TVM是一个多层的结构 从上一个文档(TVM调试)中,基本可以发现,TVM在python这一层提供了相关的设备接口,然后使用tvm.build真正的编译,然后调用get_source函数来获得想要的源码(或者IR,比如llvm选项提供的是LLVM的IR,或者PTX选项提供的就是NVPTX类型的IR). 因此,添加新…
将TVM集成到PyTorch 随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益.PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户.PyTorch现在具有基于TVM的官方后端torch_tvm. 用法很简单: import torch_tvm torch_tvm.enable() 就是这样!然后,PyTorch将尝试在其JIT编译过程中,将所有可能的算子转换为已知的Relay算子. 背景 与许多其它ML框架不同,PyTorch公开了一个…
桥接PyTorch和TVM 人工智能最引人入胜的一些应用是自然语言处理.像BERT或GPT-2之类的模型及其变体,可以获住足够多的文本信息. 这些模型属于称为Transformers的神经网络类体系结构. HuggingFace transformers library是实现最受欢迎的库之一. 与已经高度优化的实现的卷积模型或LSTM相比,对于Transformers而言,情况并非如此.本文探索TVM如何填补空白.分两个步骤进行操作: 首先,在TVM上,使用BERT inference推理和调优…
将TVM集成到PyTorch上 随着TVM不断展示出对深度学习执行效率的改进,很明显PyTorch将从直接利用编译器堆栈中受益.PyTorch的主要宗旨是提供无缝且强大的集成,而这不会妨碍用户.为此,PyTorch现在具有基于TVM的官方后端torch_tvm. 用法很简单: import torch_tvm torch_tvm.enable() PyTorch将尝试在其JIT编译过程中,将所有可能的运算符转换为已知的Relay运算符. 背景 与许多其他ML框架不同,PyTorch公开了一个渴望…
目录SAIU R20 1 6 第1页第1 章. 初识STM32...................................................................................................................... 11.1. 课前预习..........................................................................................…
0. 创建anaconda env numpy中MKL/BLAS库占用很大空间.使用如下命令创建新环境,并替换numpy. conda create -n extranumpy python=3.8.12 conda activate extranumpy conda install -c conda-forge numpy pip install pyinstaller 1. 测试用python脚本 #! /usr/bin/python3.6 # -*- coding:utf-8 -*- #…
Hello TVM  发表于 2019-06-29 TVM 是什么?A compiler stack,graph level / operator level optimization,目的是(不同框架的)深度学习模型在不同硬件平台上提高 performance (我要更快!) TVM, a compiler that takes a high-level specification of a deep learning program from existing frameworks and…
1. TVM安装 这部分之前就写过,为了方便,这里再复制一遍. 首先下载代码 git clone --recursive https://github.com/dmlc/tvm 这个地方最好使用--recursive选项,不然会缺dlpack这些库,原因是 子模组 'HalideIR' (https://github.com/dmlc/HalideIR) 未对路径 '3rdparty/HalideIR' 注册子模组 'dlpack' (https://github.com/dmlc/dlpack…
TVM如何训练TinyML 机器学习研究人员和从业人员对"裸机"(低功耗,通常没有操作系统)设备产生了广泛的兴趣.尽管专家已经有可能在某些裸机设备上运行某些模型,但是为各种设备优化模型的挑战非常艰巨,通常需要手动优化设备特定的库.对于那些没有Linux支持的平台,不存在用于部署模型的可扩展解决方案.因此,为了定位新设备,开发人员必须实现一次性的定制软件堆栈,以管理系统资源和调度模型执行. 机器学习软件的手动优化不是裸机设备领域独有的.实际上,对于使用其它硬件后端(例如GPU和FPGA)…