使用 C# 入门深度学习:线性代数】的更多相关文章

新手入门深度学习,选择 TensorFlow 有哪些益处? 佟达:首先,对于新手来说,TensorFlow的环境配置包装得真心非常好.相较之下,安装Caffe要痛苦的多,如果还要再CUDA环境下配合OpenCV使用,对于新手来说,基本上不折腾个几天是很难搞定的. 其次,基于TensorFlow的教学资源非常多,中英文的都有,这对于新手也是非常有帮助的.Google做社区非常有一套,在中国有专门的一群人,会在第一时间把Google的开发者相关的进展翻译成中文. 另外,由于有Google背书,Ten…
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,<零基础入门深度学习>系列文章旨在讲帮助爱编程的你从零基础达到入门级水平.零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章.虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean…
import osimport lr as lrimport tensorflow as tffrom pyspark.sql.functions import stddevfrom tensorflow.keras import datasetsos.environ['TF_CPP_MIN_LOG_LEVEL']='2' #只打印error的信息(x,y),_=datasets.mnist.load_data()#x: [60k,28,28]#y: [60k]x=tf.convert_to_t…
代码: def forward(self, x): ''' 根据式1-式6进行前向计算 ''' self.times += 1 # 遗忘门 fg = self.calc_gate(x, self.Wfx, self.Wfh, self.bf, self.gate_activator) self.f_list.append(fg) # 输入门 ig = self.calc_gate(x, self.Wix, self.Wih, self.bi, self.gate_activator) self.…
如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) 每层之间每个节点都是完全连接的,其中包含权重(W).每层都存在一个偏移值(b). 每一层节点的计算方式如下: 其中g()代表激活函数,o()代表softmax输出函数. 使用Flow Graph的方式来表达如何正向推导神经网络,可以表达如下: x: 输入值 a(x):表示每个隐藏层的pre-acti…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 吴恩达采访Geoffrey Hinton NG:前几十年,你就已经发明了这么多神经网络和深度学习相关的概念,我其实很好奇,在这么多你发明的东西中,哪些你到现在为止依然保持有热情的. Hinton:我认为我觉得最具学术之美的是受限Boltzmann机器,我们认为他能用很简单很简单的算法去应用到密度很高的连接起来的网络. Hinton:我仍然认为无监督学习十分重要,当我们真正搞明白一些东西以后,结果会比现在好很多.不过目前并没有找到这种方法.…
×下面资源个人全都跑了一遍,不会出现仅是字符而无法运行的状况,运行环境: Geoffrey Hinton在多次访谈中讲到深度学习研究人员不要仅仅只停留在理论上,要多编程.个人在学习中也体会到单单的看理论到头来还是一头雾水,只有不断和编程结合,才能检验自己是否掌握了这门知识.但是作为初学者应先以跑通理论为第一要义,所以可以使用有关框架,降低入门难度,避免重复造轮子. 一.TensorFlow 资源地址: 资源介绍: 资源目录: 二.PyTorch 资源地址: 资源介绍: 这个资源为深度学习研究人员…
本文转载自:https://blog.csdn.net/qq_38906523/article/details/78730158 即将进入 2018 年,随着硬件的更新换代,越来越多的机器学习从业者又开始面临选择 GPU 的难题.正如我们所知,机器学习的成功与否很大程度上取决于硬件的承载能力.在今年 5 月,我在组装自己的深度学习机器时对市面上的所有 GPU 进行了评测.而在本文中,我们将更加深入地探讨: 为什么深度学习需要使用 GPU GPU 的哪种性能指标最为重要 选购 GPU 时有哪些坑需…
本来以为很好安装的一个东西,硬是从晚上九点搞到十二点,安装其实并不难,主要是目前网上的教程有很多方案完全不一样,有根据pip安装的,有根据docker安装的等等,看得我眼花缭乱,好不容易找到一个靠谱点的,各项参数都给略过了,我安装时算是踩了不少坑,现在成功安装,回忆一下过程并整理出来,希望对想入门深度学习框架的朋友有帮助,最起码不要在门槛上被恶心. 为了能够快速的安装组件,请先将镜像源地址改为清华镜像站地址,我在安装时只更改了Anaconda仓库地址:https://mirrors.tuna.t…
刚入门深度学习时,没有显存的概念,后来在实验中才渐渐建立了这个意识. 下面这篇文章很好的对GPU和显存总结了一番,于是我转载了过来. 作者:陈云 链接:https://zhuanlan.zhihu.com/p/31558973 来源:知乎 深度学习最吃机器,耗资源,在本文,我将来科普一下在深度学习中: 何为"资源" 不同操作都耗费什么资源 如何充分的利用有限的资源 如何合理选择显卡 并纠正几个误区: 显存和GPU等价,使用GPU主要看显存的使用? Batch Size 越大,程序越快…