A*算法–A* algorithm tutorial】的更多相关文章

Author:Justin Heyes-Jones From: http://heyes-jones.com/astar.php Date:2014.8.16 本文地址:http://www.cnblogs.com/killerlegend/p/3917083.html Translated By KillerLegend 前言:前不久数学建模涉及到一个地图路径最优化的模型,最初采用的是Dijkstra算法以及Kruscal最小生成树等算法进行解决的,后来在网上查找时偶然遇到了A*算法,于是就看…
计算复杂度(Computational complexity):用于研究解决特定问题X的算法效率的框架 计算模型(Model of computation):可允许的操作(Allowable operations) 成本模型(Cost model):操作数(Operation counts) 复杂度上界(Upper bound):保证能在一定的时间内解决 复杂度下界(Lower bound):通过数学方法证明,必须花费的最少时间 最优算法(Optimal algorithm):可能达到的最小复杂…
通用的(泛型)算法 generic algorithm 总览 特性: 1,标准库的顺序容器定义了很少的操作,比如添加,删除等. 2,问题:其实还有很多操作,比如排序,查找特定的元素,替换或删除一个特定值等,但是标准库并未给每个容器都定义成员函数来实现这些操作. 3,解决办法:因为算法是相同的逻辑,只是进行运算的元素的类型是不同的.所以定义了一组与类型无关的通用的(泛型)算法:generic algorithm.它们实现了实现了上述标准库未提供的操作. 4,好处:不用为每个容器实现上述的操作. 大…
凸形状内部的任意两点的连线都应该在形状里面. 1 道格拉斯-普克算法 Douglas-Peucker algorithm 这个算法在其他文章中讲述的非常详细,此处就详细撰述. 下图是引用维基百科的.ε称之为阈值 shreshold 图一 静态图如下: 具体详细的可以参考如下两篇文章. 相关文章如下: 道格拉斯-普克 抽稀算法 附javascript实现,该文章只看他的文字讲解就好,他的代码不是通过python实现的. 道格拉斯-普克算法(Douglas–Peucker algorithm),该文…
假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们可以定义整体代价函数为: 以上公式中的第一项 是一个均方差项.第二项是一个规则化项(也叫权重衰减项),其目的是减小权重的幅度,防止过度拟合. [注:通常权重衰减的计算并不使用偏置项 ,比如我们在 的定义中就没有使用.一般来说,将偏置项包含在权重衰减项中只会对最终的神经网络产生很小的影响.在贝叶斯规则…
写在前面: 为了能够使后续的代码具有高效简洁的特点,在这里讲一下STL,就不用自己写堆,写队列,但是做为ACMer不用学的很全面,我认为够用就好,我只写我用的比较多的. 什么是STL(STl内容): 容器(Container): 是一种数据结构,如list,vector,和deques ,以模板类的方法提供.为了访问容器中的数据,可以使用由容器类输出的迭代器: 迭代器(Iterator): 提供了访问容器中对象的方法.例如,可以使用一对迭代器指定list或vector中的一定范围的对象.迭代器就…
排序算法的介绍 排序也称排序算法 (Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程. 排序的分类 1) 内部排序: 指将需要处理的所有数据都加载 到内部存储器(内存)中进行排序. 2) 外部排序法:数据量过大,无法全部加载到内 存中,需要借助外部存储(文件等)进行 排序. 常见的排序算法分类 算法的时间复杂度 度量一个程序(算法)执行时间的两种方法 1.事后统计的方法这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序: 二是所…
1. 前言维特比算法针对HMM第三个问题,即解码或者预测问题,寻找最可能的隐藏状态序列: 对于一个特殊的隐马尔可夫模型(HMM)及一个相应的观察序列,找到生成此序列最可能的隐藏状态序列. 也就是说给定了HMM的模型参数和一个观测序列,计算一系列的隐状态,使得此观察序列的出现可能最大,即最大化P(隐状态 | 观测序列),给定观测序列,求最可能的对应的隐状态序列. 实际上解决此问题,在<统计学习方法>中给出了两种解法,一个是近似算法,另一个就是维特比算法(Viterbi algorithm) 2.…
1为什么我们需要KNN 现在为止,我们都知道机器学习模型可以做出预测通过学习以往可以获得的数据. 因为KNN基于特征相似性,所以我们可以使用KNN分类器做分类. 2KNN是什么? KNN K-近邻,是一种简单的机器学习算法,目前被广泛使用分类.KNN做分类基于基于与 将要分类的点 的邻居的类别. KNN 存储所有可以获得的例子,并基于相似性的度量做出分类 (也就是说和仓库里的特征进行对比,谁相近 就判为哪一类.) k在KNN中是一个参数,指的是在多数表决过程中要包括的最近的邻居的数量(这里的意思…
http://www.cnblogs.com/jingwhale/p/4618351.html Apriori algorithm是关联规则里一项基本算法.是由Rakesh Agrawal和Ramakrishnan Srikant两位博士在1994年提出的关联规则挖掘算法.关联规则的目的就是在一个数据集中找出项与项之间的关系,也被称为购物蓝分析 (Market Basket analysis),因为“购物蓝分析”很贴切的表达了适用该算法情景中的一个子集. 关于这个算法有一个非常有名的故事:"尿布…