AI For Everyone https://www.coursera.org/learn/ai-for-everyone 讲师: Andrew Ng (吴恩达) CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain Landing.AI CEO /…
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM 本文可以解答: RNN用来解决什么问题,什么样的数据特征适合用它来解决 ​RNN的缺陷是什么,LSTM,GRU是如何…
本篇文章被Google中国社区组织人转发,评价: 条理清晰,写的很详细! 被阿里算法工程师点在看! 所以很值得一看! 前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - 简化符号表示 - stacked RNN - 双向RNN - 梯度消失爆炸问题 GRU模型结构 LSTM模型结构 - LSTM背后的关键思想 - Step by Step理解LSTM…
吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货 摘要: 目前,AI技术做出的经济贡献几乎都来自监督学习,也就是学习从A到B,从输入到输出的映射.现在,监督学习.迁移学习.非监督学习.强化学习这四类算法所创造的经济效益是递减的.机器学习依靠结构化数据,比非结构化数据创造了更多的经济效益.AI的范围,比监督学习广泛得多.我认为人们平时所说的AI,其实包含了好几类工具:比如机器学习.图模型.规划算法.知识表示(知识图谱). 人们的关注点集中在机器学习和深度学习,很大程度上是因为其他工…
Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 - 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算 ​ 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇) 我们将实现以下结构的RNN,在这个例子中 Tx = Ty. 向量表示以及它的维度 Input with  nx …
[目录][吴恩达课后作业目录] 吴恩达深度学习相关资源下载地址(蓝奏云) 课程 周数 名称 类型 语言 地址 课程1 - 神经网络和深度学习 第1周 深度学习简介 测验 中英 传送门 无编程作业 编程作业 -- -- 第2周 神经网络基础 测验 中英 传送门 具有神经网络思维的Logistic回归 编程作业 中文 传送门 第3周 浅层神经网络 测验 中英 传送门 带有一个隐藏层的平面数据分类 编程作业 中文 传送门 第4周 深度神经网络的关键概念 测验 中英 传送门 一步步搭建多层神经网络以及应…
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weixin.qq.com/s/cX9_DiqofPhdXrY_0oTEAw 课程1 - 神经网络和深度学习 周数 名称 类型 地址 week1 深度学习简介 测验 略 week2 神经网络基础 笔记 逻辑回归 逻辑回归推导 具有神经网络思维的Logistic回归 编程作业 识别猫 week3 浅层神经网络…
上一篇  ※※※※※※※※  [回到目录]  ※※※※※※※※  下一篇 这一章的内容比较简单,主要是MATLAB的一些基础教程,如果之前没有学过matlab建议直接找一本相关书籍,边做边学,matlab的编程入门还是比较容易的. 在这里想讲一下matlab和Python的区别: 吴恩达教授在刚开始教机器学习课程的时候,主要用的是matlab/octave,他给出的理由是利用matlab/octave学生能够更快更好地学习并掌握机器学习算法.这只是当时的情况,在后期吴恩达教授深度学习课程的教学中…
1.问题描述 有209张图片作为训练集,50张图片作为测试集,图片中有的是猫的图片,有的不是.每张图片的像素大小为64*64 吴恩达并没有把原始的图片提供给我们 而是把这两个图片集转换成两个.h5文件:train_catvnoncat.h5(训练集),test_catvnoncat.h5(测试集). 这三这个文件的下载地址:https://pan.baidu.com/s/1bL8SC3gNxbzL9Xo4C6ybow    提取码: iaq7  这个h5文件是一种数据文件格式,关于它的写入和读取…
参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 4.正则化 1)加载数据 仍是问题: 'c' argument has 1 elements, which is not acceptable for use with 'x' with s 解决——直接导入函数: import scipy.io as sio def load_2D_dataset(is_plot=Tru…