P4714 「数学」约数个数和 题意(假):每个数向自己的约数连边,给出\(n,k(\le 10^{18})\),询问\(n\)的约数形成的图中以\(n\)为起点长为\(k\)的链有多少条(注意每个点都有自环) 这样想是做不出来题的. 正常的题意是:询问\(n\)的约数的约数的....(共\(k\)次复读后)约数个数和. 考虑\(f_k(n)\)表示答案. 显然有\(f_{k}(n)=\sum_{d|n}f_{k-1}(d)\) 注意到用数论卷积的形式可以表示为 \[ \mathtt f_k=\…
题解: 会了Miller-Rabin这题就很简单了 首先这种题很容易想到质因数分解 但是暴力根号算法是不行的 所以要用到 Miller-Rabin素数 https://blog.csdn.net/ltyqljhwcm/article/details/53045840 对于要判断的数n 1.先判断是不是2,是的话就返回true. 2.判断是不是小于2的,或合数,是的话就返回false. 3.令n-1=u*2^t,求出u,t,其中u是奇数. 4.随机取一个a,且1<a<n /*根据费马小定理,如果…
题面在这里! 第一眼感觉炒鸡水啊...只要把N质因数分解一下,因为k次约数相当于求k+2元一次方程的非负整数解,所以答案就是和每个质因子指数有关的一些组合数乘起来. 但是要用pillard's rho啊.... (于是现学了一下,发现不会Miller Rabin...然后又先去学Miller Rabin 23333) Miller Rabin 的部分就不说了...随便找个博客肯定都讲的比我好多了2333 Pillard's rho 的原理就是生日悖论,随机s个数之后两两作差并与n求gcd,当s不…
题目 众所周知,除数个数函数\(\sigma_0=I^2\),\(I\)就是狄利克雷卷积里的\(1\)函数 于是熟悉狄利克雷卷积的话很快就能看出我们要求的就是\(I\times I^{k}\),即\(I^{k+1}\),我们给这个函数起一个名字叫\(f^{k+1}\) 显然这个东西是积性函数,于是我们考虑一下指数次幂的\(f\)如何求 显然 \[f^{k+1}(n)=\sum_{d|n}f^{k}(d)\] 对于指数次幂\(p^m\) \[f^{k+1}(p^m)=\sum_{i=0}^mf^k…
洛谷 P4710 「物理」平抛运动 洛谷传送门 题目描述 小 F 回到班上,面对自己 28 / 110 的物理,感觉非常凉凉.他准备从最基础的力学学起. 如图,一个可以视为质点的小球在点 A(x_0, y_0)A(x0,y0) 沿 xx 轴负方向以某速度抛出,无视除重力外的所有阻力,最后恰好以速度 vv 砸到 B(0, 0)B(0,0) 点. 给定 vv 的大小与方向,你的任务是求出 (x_0,y_0)(x0,y0). 给定的速度单位为 m \cdot s ^ {-1}m⋅s−1,重力加速度 g…
洛谷比赛 「EZEC」 Round 4 T1 zrmpaul Loves Array 题目描述 小 Z 有一个下标从 \(1\) 开始并且长度为 \(n\) 的序列,初始时下标为 \(i\) 位置的数字为 \(i\).有 \(m\) 个操作,每个操作会是以下四种之一. 1 对序列从小到大进行排序. 2 对序列从小到大进行排序后将其翻转,(译者注:就是从大到小排序). 3 x y 将下标为 \(x,y\) 的数交换位置.保证 \(x\neq y\) 且 \(1\le x,y\le n\). 4 将…
题面 洛谷P6788 「EZEC-3」四月樱花 给定 \(n,p\),求: \[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y}(z+1)^2}\right)\bmod p \] 数据范围:\(1\le n\le 2.5\cdot 10^9\),\(9.9\cdot 10^8<p<1.1\cdot 10^9\). 蒟蒻语 一道题撑起一场月赛,良心又劲爆. 膜拜出题人 @SOSCHINA,@muxii. 蒟蒻解 开局一波猛…
[SDOI2015]约数个数和 题目描述 设\(d(x)\)为\(x\)的约数个数,给定\(N,M\),求$ \sum\limits^N_{i=1}\sum\limits^M_{j=1}d(ij)$ 输入输出格式 输入格式: 输入文件包含多组测试数据.第一行,一个整数\(T\),表示测试数据的组数.接下来的\(T\)行,每行两个整数\(N,M\). 输出格式: \(T\)行,每行一个整数,表示你所求的答案. 说明 \(1 \le N, M \le 50000\) \(1 \le T \le 50…
洛谷题面传送门 orz 一发出题人(话说我 AC 这道题的时候,出题人好像就坐在我的右侧呢/cy/cy) 考虑一个很 naive 的 DP,\(dp_i\) 表示 \([l,i]\) 之间的字符串是否可以被识别,转移就枚举上一段的终止为止,然后 SAM/哈希判断子串是否在 \(s\) 中出现过. 注意到一个事实:所有长度 \(>2k\) 的字符串都可以由长度 \(\ge k\) 的字符串拼成,也就是说只有长度在 \([k,2k]\) 的字符串是有用的,故每次转移只用枚举 \(k+1\) 个转移点…
洛谷题面传送门 hot tea. 首先注意到这个 \(\text{lcm}\) 特别棘手,并且这里的 \(k\) 大得离谱,我们也没办法直接枚举每个质因子的贡献来计算答案.不过考虑到如果我们把这里的 \(\text{lcm}\) 改为 \(\gcd\) 那么一遍莫比乌斯反演即可搞定,因此考虑将这里的 \(\text{lcm}\) 与 \(\gcd\) 联系在一起.那么什么能将这两个东西联系在一起呢?Min-Max 容斥,具体来说,考虑式子 \[\text{lcm}(S)=\prod\limits…