随机模拟 统计模拟中有一个重要的问题就是给定一个概率分布 p(x),我们如何在计算机中生成它的样本.一般而言均匀分布 Uniform(0,1)的样本是相对容易生成的. 通过线性同余发生器可以生成伪随机数,我们用确定性算法生成[0,1]之间的伪随机数序列后,这些序列的各种统计指标和均匀分布 Uniform(0,1) 的理论计算结果非常接近.这样的伪随机序列就有比较好的统计性质,可以被当成真实的随机数使用. 生成一个概率分布的样本 而我们常见的概率分布,无论是连续的还是离散的分布,都可以基于Unif…
http://blog.csdn.net/pipisorry/article/details/51525308 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样进行文档分类(聚类),当然更复杂的实现可以看看吉布斯采样是如何采样LDA主题分布的[主题模型TopicModel:隐含狄利克雷分布LDA]. 关于吉布斯采样的介绍文章都停止在吉布斯采样的详细描述上,如随机采样和随机模拟:吉布斯采样Gibbs Sampling(why)但并没有说明吉布斯采样到底如何实现的(how)? 也就是具体怎么实现…
http://blog.csdn.net/pipisorry/article/details/51373090 吉布斯采样算法详解 为什么要用吉布斯采样 通俗解释一下什么是sampling. sampling就是以一定的概率分布,看发生什么事件.举一个例子.甲只能E:吃饭.学习.打球,时间T:上午.下午.晚上,天气W:晴朗.刮风.下雨.现在要一个sample,这个sample可以是:打球+下午+晴朗...问题是我们不知道p(E,T,W),或者说,不知道三件事的联合分布.当然,如果知道的话,就没有…
Gibbs Sampling Intro Gibbs Sampling 方法是我最近在看概率图模型相关的论文的时候遇见的,采样方法大致为:迭代抽样,最开始从随机样本中抽样,然后将此样本作为条件项,按条件概率抽样,每次只从一个维度考虑,当所有维度均采样完,开始下一轮迭代. Random Sampling 假设我们一直一个随机变量的概率密度函数,我们如何采样得到服从这个分布的样本呢? 学矩阵论的时候,老师教我们用反函数来生成任意概率分布的随机数,因此,我们也可以用反函数法来生成该分布的样本.即假设…
http://blog.csdn.net/pipisorry/article/details/51539739 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样来采样截断多维高斯分布的参数(已知一堆截断高斯分布的数据,推断其参数( μ , Σ )). 关于吉布斯采样的介绍文章都停止在吉布斯采样的详细描述上,如随机采样和随机模拟:吉布斯采样Gibbs Sampling(why)但并没有说明吉布斯采样到底如何实现的(how)? 也就是具体怎么实现从下面这个公式采样? 下面介绍如何为多维正态分布构…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
转载请注明出处:Bin的专栏,http://blog.csdn.net/xbinworld 本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
Atitit.并发测试解决方案(2) -----获取随机数据库记录 随机抽取数据 随机排序 1. 应用场景 1 2. 随机抽取数据原理 1 3. 常用的实现方法:::数据库随机函数 1 4. Mssql 的实现 NEWID() 跟rand()  1 5. newid()与rand()的区别 2 6. NEWID() 2 7. 参考 2 1. 应用场景 并发测试 2. 随机抽取数据原理 原理是 循环所有的ID/记录,附加随机函数字段,然后排序as 这个字段.. 3. 常用的实现方法:::数据库随机…
一.5随机到7随机 //给定条件 int Rand1To5(){ + ; } //实现代码,使用插空法和筛的过程 int Rand1To7(){ ; do{ tmp = (Rand1To5() - ) * + Rand1To5() - ; }) + ; } 二.给定一个以p概率产生0,以1-p概率产生1的随机函数Rand01p,实现等概论随机产生1-6的随机函数Rand1To6. //给定条件 double Rand(){ ) / 1000.0; } int Rand01p(){ double…