洛谷 [P1578] WC2002 奶牛浴场】的更多相关文章

本题是一道用极大化思想求最大子矩阵的经典题目.这个题目很出名,可以在百度搜索王知昆国家队dalao的论文,其中说的非常详细. 先枚举极大子矩形的左边界,然后从左到右依次扫描每一个障碍点,并不断修改可行的上下边界,从而枚举出所有以这个定点为左边界的极大子矩形. 需要注意的是,如果扫描到的点不在当前的上下边界内,那么就不需要对这个点进行处理. 这样做是否将所有的极大子矩形都枚举过了呢? 可以发现,这样做只考虑到了左边界覆盖一个点的矩形,因此我们还需要枚举左边界与整个矩形的左边界重合的情况.这还可以分…
洛谷题解里那个人可真是话多呢. 题目描述 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建造一个大型浴场.但是John的奶牛有一个奇怪的习惯,每头奶牛都必须在牛场中的一个固定的位置产奶,而奶牛显然不能在浴场中产奶,于是,John希望所建造的浴场不覆盖这些产奶点.这回,他又要求助于Clevow了.你还能帮助Clevow吗? John的牛场和规划的浴场都是矩形.浴场要完全位于牛场之内,并且浴场的轮廓要与牛场的轮廓平行或者重合.浴场不能覆盖任何产…
https://www.luogu.org/problemnew/show/P1578#sub 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建造一个大型浴场.但是John的奶牛有一个奇怪的习惯,每头奶牛都必须在牛场中的一个固定的位置产奶,而奶牛显然不能在浴场中产奶,于是,John希望所建造的浴场不覆盖这些产奶点.这回,他又要求助于Clevow了.你还能帮助Clevow吗? John的牛场和规划的浴场都是矩形.浴场要完全位于牛场之内,并且浴…
P1578 奶牛浴场 题目描述 由于John建造了牛场围栏,激起了奶牛的愤怒,奶牛的产奶量急剧减少.为了讨好奶牛,John决定在牛场中建造一个大型浴场.但是John的奶牛有一个奇怪的习惯,每头奶牛都必须在牛场中的一个固定的位置产奶,而奶牛显然不能在浴场中产奶,于是,John希望所建造的浴场不覆盖这些产奶点.这回,他又要求助于Clevow了.你还能帮助Clevow吗? John的牛场和规划的浴场都是矩形.浴场要完全位于牛场之内,并且浴场的轮廓要与牛场的轮廓平行或者重合.浴场不能覆盖任何产奶点,但是…
https://www.luogu.org/problemnew/show/P1578 题解 另外这题有一些小坑,洛谷的题解里面有讲 #pragma GCC optimize("Ofast") #include<cstdio> #include<algorithm> #include<cstring> #include<vector> using namespace std; #define fi first #define se sec…
题目:https://www.luogu.org/problemnew/show/P1578 枚举左边界,向右枚举右边界,同时不断限制上下边界,最后右边界是整个图的边界: 由于没有做左边界是整个图的边界的情况,所以再从右往左做一遍: 还没有做左右边界都是整个图的边界的情况,所以再特殊做一下: 注意题目上说的是障碍点可以在边界上! 而且不是格子图! 代码如下: #include<iostream> #include<cstdio> #include<cstring> #i…
题面 1.定义有效子矩形为内部不包含任何障碍点且边界与坐标轴平行的子矩形.如图所示,第一个是有效子矩形(尽管边界上有障碍点),第二个不是有效子矩形(因为内部含有障碍点). 2.极大有效子矩形:一个有效子矩形,如果不存在包含它且比它大的有效子矩形,就称这个有效子矩形为极大有效子矩形.(为了叙述方便,以下称为极大子矩形) 3.定义最大有效子矩形为所有有效子矩形中最大的一个(或多个).以下简称为最大子矩形. 综上所述: 在一个有障碍点的矩形中的最大子矩形一定是一个极大子矩形. 算法的思路是通过枚举所有…
题目 悬线法的思想--即扫描线的思想,每个矩阵必定是由两个障碍来构成左右边界或者上下边界. 如果此两个障碍组成了左右边界,枚举这两个障碍中途更新这两个障碍之间的矩阵上下边界,并且更新最大值. 考虑如何线性求出两个障碍的矩阵上下边界, 我们可以把障碍按x坐标排序,然后对于每个障碍,都找x比他大的障碍找一遍,也就是悬线向右扩展,每找一个就更新一下上边界或下边界也就是更新悬线的上下端点, 因为越向右,矩阵的上边界和下边界就逼近矩阵的宽减少,但是矩阵的长却是一直增大的,因此需要每次都更新最大值. 组成了…
P2915 [USACO08NOV]奶牛混合起来Mixed Up Cows 题意: 给定一个长\(N\)的序列,求满足任意两个相邻元素之间的绝对值之差不超过\(K\)的这个序列的排列有多少个? 范围: \(0<=n<=16,0<=序列元素<=25000,0<=k<=3400\) 统计次数一般是递推干的事情,但是我们发现,这个递推并没有一个很明显的顺序关系,并不可以说前几个转移到下一个之类的. 看看数据这么小,一般都是状压干的事情了. 我们可以按照规模进行递推,即一个大小…
传送门啦 这个题也是一个单调队列来优化的 $ dp $ ,我们考虑这个题,这个题让我们求出有多少奶牛会觉得拥挤,如果我们还像琪露诺那个题那样单纯用一次单调队列肯定是不行的,因为牛觉不觉得拥挤是受左右的影响,所以我们选择从前往后.从后往前用两遍单调队列. 一开始就是在 $ push $ 元素的时候,如果要 $ push $ 的元素是队尾元素高度的两倍,那么就给队尾的元素打一个标记,然后 $ tail-- $ 但是这样的做法会造成漏判,所以,我们要换一种判断的方法.就是把判断从当前元素判断队中的元素…