spark动态资源(executor)分配】的更多相关文章

spark动态资源调整其实也就是说的executor数目支持动态增减,动态增减是根据spark应用的实际负载情况来决定. 开启动态资源调整需要(on yarn情况下) 1.将spark.dynamicAllocation.enabled设置为true.意思就是启动动态资源功能 2.将spark.shuffle.service.enabled设置为true. 在每个nodeManager上设置外部shuffle服务 2.1 将spark-<version>-yarn-shuffle.jar拷贝到…
问题: 线上的spark thriftserver运行一段时间以后,ui的executor页面上显示大量的active task,但是从job页面看,并没有任务在跑.此外,由于在yarn mode下,默认情况是一个executor只能有一个active task,但是executor页面的active task却可以有多个.而且在没有任务在跑的情况下,动态资源你分配不能生效,spark thriftserver在空闲的情况下资源得不到释放. 问题排查: 1,看到某个executor有大量的act…
本期内容 : Spark Streaming资源动态分配 Spark Streaming动态控制消费速率 为什么需要动态处理 : Spark 属于粗粒度资源分配,也就是在默认情况下是先分配好资源然后再进行计算,粗粒度有个好处,因为资源是提前给你分配好,当有计算任务的时候直接使用就可以了, 粗粒度不好的方面就是从Spark  Streaming角度讲有高峰值.低峰值,在高与低峰值时候需要的资源是不一样的,如果资源分配按照高峰值考虑的话,在低峰值就是对资源的浪费, 随着Spark Streaming…
背景 在某地市开展项目的时候,发现数据采集,数据探索,预处理,数据统计,训练预测都需要很多资源,现场资源不够用. 目前该项目的资源3台旧的服务器,每台的资源 内存为128G,cores 为24 (core可暂时忽略,以下仅考虑内存即可) . 案例分析 我们先对任务分别分析,然后分类. 数据采集基于DC,接的是Kafka的源,属于流式,常驻任务.kafka来新数据时才需要资源,空闲时可释放.目前占用的资源情况为:28( topic数)*2(线程数)*1G = 56G,且该值会随着带采集增量表数量的…
当用户应用new SparkContext后,集群就会为在Worker上分配executor,那么这个过程是什么呢?本文以Standalone的Cluster为例,详细的阐述这个过程.序列图如下: 1. SparkContext创建TaskScheduler和DAG Scheduler SparkContext是用户应用和Spark集群的交换的主要接口,用户应用一般首先要创建它.如果你使用SparkShell,你不必自己显式去创建它,系统会自动创建一个名字为sc的SparkContext的实例.…
Spark动态加载外部资源文件 1.spark-submit --files 动态加载外部资源文件 之前做一个关于Spark的项目时,因项目中需要读取某个静态资源文件,然后在本地IDEA测试一切皆正常,但是传到服务器上时,一直显示找不到该静态资源文件,后尝试了两三种方法解决问题. 本地测试时,通过 val is: InputStream = this.getClass.getResourceAsStream("./xxx.sql") 来获取的静态资源文件,传至服务器后,找不到该静态资源…
本篇从二个方面讲解: 高级特性: 1.Spark Streaming资源动态分配 2.Spark Streaming动态控制消费速率 原理剖析,动态控制消费速率其后面存在一套理论,资源动态分配也有一套理论. 先讲理论,后面讨论. 为什么要动态资源分配和动态控制速率? Spark默认是先分配资源,然后计算:粗粒度的分配方式,资源提前分配好,有计算任务提前分配好资源: 不好的地方:从Spark Streaming角度讲有高峰值和低峰值,如果资源分配从高峰值.低峰值考虑都有大量资源的浪费. 其实当年S…
微信搜索lxw1234bigdata | 邀请体验:数阅–数据管理.OLAP分析与可视化平台 | 赞助作者:赞助作者 Spark动态资源分配-Dynamic Resource Allocation Spark lxw1234@qq.com 4年前 (2015-12-31) 30544℃ 6评论 关键字:spark.资源分配.dynamic resource allocation Spark中,所谓资源单位一般指的是executors,和Yarn中的Containers一样,在Spark On Y…
本文转自:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 此文解决了Spark yarn-cluster模式运行时,内存不足的问题. Spark yarn-cluster模式运行时,注意yarn.app.mapreduce.am.resource.mb的设置.默认为1G Spark On YARN内存分配 本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有…
Spark On YARN内存分配 本文主要了解Spark On YARN部署模式下的内存分配情况,因为没有深入研究Spark的源代码,所以只能根据日志去看相关的源代码,从而了解“为什么会这样,为什么会那样”. 说明 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client模式.yarn-cluster模式. 当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一…