利用python求非线性方程】的更多相关文章

最近在做的东西中有一件任务,相当于一个函数已知y来求x,网上找了各种办法最终得以实现.在此说明方法,并记录一些坑. 要求的函数比如:log(x) - log(1-x) + 2.2 * (1 -2x) 最好用的方法,利用Scipy.optimize中的fsolve函数. 在该方法中,我们可以调用scipy.optimize.fsolve来求解非线性方程(组),具体方法如下: from scipy.optimize import fsolve import numpy as np # 按格式要求定义…
本人最近在写一篇关于神经网络同步的文章,其一部分模型为: x_i^{\Delta}(t)= -a_i*x_i(t)+ b_i* f(x_i(t))+ \sum\limits_{j \in\{i-1, i+1\}}c_{ij}f(x_j(t-\tau_{ij})), t\in\mathbb{R} (1.1) y_i^{\Delta}(t)= -a_i*y_i(t)+ b_i* f(y_i(t))+ \sum\limits_{j \in\{i-1, i+1\}}c_{ij}f(y_j(t-\tau_…
背景: 2019年初由于尚未学习量子力学相关知识,所以处于自学阶段.浅显的学习了曾谨言的量子力学一卷和格里菲斯编写的量子力学教材.注重将量子力学的一些基本概念了解并理解.同时老师向我们推荐了Quantum Computation and Quantum Information 这本教材,了解了量子信息相关知识. 2019年暑假开始量子力学课程的学习,在导师的推荐下,从APS(美国物理学会)和AIP(美国物理联合会)下载了与量子纠缠(Quantum Discord)相关的著名的文献和会议报告,了解…
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4节 透视表和交叉表 第5节 时间序列 第6节 日期的规范.频率以及移动 第7节 时区处理 第8节 时期及算术运算 第9节 重采样及频率转换 第10节 时间序列绘图 groupby 技术 一.实验简介 Python 数据分析(二)需要同学们先行学完 Python 数据分析(一)的课程. 对数据集进行分…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…
import tkinter import tkinter.messagebox import math class JSQ: def __init__(self): #创建主界面 self.root = tkinter.Tk() self.root.minsize(270, 330) self.root.maxsize(270, 330) self.root.title('小可乐的计算器') #定义一个变量赋值给页面label self.result = tkinter.StringVar()…
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa…
利用Python学习线性代数 -- 1.1 线性方程组 本节实现的主要功能函数,在源码文件linear_system中,后续章节将作为基本功能调用. 线性方程 线性方程组由一个或多个线性方程组成,如 \[ \begin{array}\\ x_1 - 2 x_2 &= -1\\ -x_1 + 3 x_2 &= 3 \end{array} \] 求包含两个变量两个线性方程的方程组的解,等价于求两条直线的交点. 这里可以画出书图1-1和1-2的线性方程组的图形. 通过改变线性方程的参数,观察图形…
一.平稳序列建模步骤 假如某个观察值序列通过序列预处理可以判定为平稳非白噪声序列,就可以利用ARMA模型对该序列进行建模.建模的基本步骤如下: (1)求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值. (2)根据样本自相关系数和偏自相关系数的性质,选择适当的ARMA(p,q)模型进行拟合. (3)估计模型中位置参数的值. (4)检验模型的有效性.如果模型不通过检验,转向步骤(2),重新选择模型再拟合. (5)模型优化.如果拟合模型通过检验,仍然转向不走(2),充分考虑…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…