这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; inline int qpow(int x,int y) { int tmp=1; for(;y;y>>=1,…
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limits_{i=1}^ndis(i,x)^k\\ &=\sum\limits_{i=1}^n\sum\limits_{j=0}^k\begin{Bmatrix}k\\j\end{Bmatrix}C_{dis(i,x)}^jj!\\ &=\sum\limits_{j=0}^k\begin{Bmatr…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/details/80882581 https://www.cnblogs.com/Wuweizheng/p/8638858.html http://www.cnblogs.com/zhouzhendong/p/Stirling-Number.html https://blog.csdn.net/qq_…
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\)这种东西变成组合数去求,具体来说就是\(n^k=\sum\limits_{i=1}^k\dbinom{n}{i}*S[k][i]*i!\),\(S\)表示第二类斯特林数,第二类斯特林数可以表示为有\(n\)个盒子要装\(m\)个小球,然后在给盒子和求加上编号就可以得出上面的式子.这样的话在根据帕斯卡…
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times j!\times{dis(i,u)\choose j}\] \[\sum_{j=1}^nS(k,j)\times j!\sum_{i=0}^k{dis(i,u)\choose j}\] 于是对于每个点只要维护好\(\sum_{i=0}^k{dis(i,u)\choose j}\)就好了 因为\({n…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i) * i! * C_{n}^{i} \) 所以维护 \( f[x][i] = \sum\limits_{u\in subtree[x],d=dist(x,u)} C_{d}^{i} \) 然后利用 \( C_{n}^{m} = C_{n-1}^{m} + C_{n-1}^{m-1} \),可以树形…
题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \\ i \end{Bmatrix} {n \choose i}i!\] 发现\(k\)很小,对于每个点可以直接\(O(k)\)计算 所以我们只需求出 \[f[i][j] = \sum\limits_{x = 1}^{N}{dis(i,x) \choose j}\] 转移可以利用 \[{n \choo…
Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 480  Solved: 234[Submit][Status][Discuss] Description Crash 小朋友最近迷上了一款游戏——文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现在Crash 已经拥有了一个N 个城市的国家,这些城市之间通过道路相连.由于建设道路是有花费的,因此Crash 只修建…
BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis(x,i)^K\). \(n\leq50000,\ k\leq150\). \(Solution\) 和其它求\(x^k\)的题一样,依旧用第二类斯特林数展开.(二项式定理依旧可以得到部分分,依旧不想看=-=) \[\begin{aligned}S(x)&=\sum_{i=1}^ndis(x,i)^K…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 第二类斯特林数展开式: \( S(i,j) = \frac{1}{j!} \sum\limits_{k=0}^{j}(-1)^{k}C_{j}^{k}(j-k)^{i} \) 大概是容斥枚举空的盒子个数.https://www.cnblogs.com/gzy-cjoier/p/8426987.html 在这道题里,先把 j 提到前面,再把组合数展开,推一推式子发现 j 之后的那部分是…