Flink 之 Data Sink】的更多相关文章

前言 再上一篇文章中 <从0到1学习Flink>-- Data Source 介绍 讲解了 Flink Data Source ,那么这里就来讲讲 Flink Data Sink 吧. 首先 Sink 的意思是: 大概可以猜到了吧!Data sink 有点把数据存储下来(落库)的意思. 如上图,Source 就是数据的来源,中间的 Compute 其实就是 Flink 干的事情,可以做一系列的操作,操作完后就把计算后的数据结果 Sink 到某个地方.(可以是 MySQL.ElasticSear…
首先 Sink 的中文释义为: 下沉; 下陷; 沉没; 使下沉; 使沉没; 倒下; 坐下; 所以,对应 Data sink 意思有点把数据存储下来(落库)的意思: Source  数据源  ---- > Compute  计算 -----> sink 落库 如上图,Source 就是数据的来源,中间的 Compute 其实就是 Flink 干的事情,可以做一系列的操作,操作完后就把计算后的数据结果 Sink 到某个地方.(可以是 MySQL.ElasticSearch.Kafka.Cassan…
前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢?这篇文章将写一个 demo 教大家将从 Kafka Source 的数据 Sink 到 MySQL 中去. 准备工作 我们先来看下 Flink 从 Kafka topic 中获取数据的 demo,首先你需要安装好了 FLink 和 Kafka . 运行启动 Flink.Zookepeer.Kafka, 好了…
前言 前篇文章 <从0到1学习Flink>-- Data Sink 介绍 介绍了 Flink Data Sink,也介绍了 Flink 自带的 Sink,那么如何自定义自己的 Sink 呢?这篇文章将写一个 demo 教大家将从 Kafka Source 的数据 Sink 到 MySQL 中去. 准备工作 我们先来看下 Flink 从 Kafka topic 中获取数据的 demo,首先你需要安装好了 FLink 和 Kafka . 运行启动 Flink.Zookepeer.Kafka, 好了…
前言 Data Sources 是什么呢?就字面意思其实就可以知道:数据来源. Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集.历史的数据集:也可以用来做流处理,即实时的处理些实时数据流,实时的产生数据流结果,只要数据源源不断的过来,Flink 就能够一直计算下去,这个 Data Sources 就是数据的来源地. Flink 中你可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 来为你的程序添加数据来源.…
flink-dockerhttps://github.com/melentye/flink-docker https://shekharsingh.com/blog/2016/11/12/apache-flink-rabbimq-streams-processor.html http://www.54tianzhisheng.cn/2019/01/20/Flink-RabbitMQ-sink/https://github.com/tydhot/Kafka-Flink-Rabbitmq-Demoh…
需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现状就是如此庞大的数据集中在一个topic里).这就需要根据一些业务规则把这个大数据量的topic数据分发到多个(成百上千)topic中,以便下游的多个job去消费自己topic的数据,这样上下游之间的耦合性就降低了,也让下游的job轻松了很多,下游的job只处理属于自己的数据,避免成百上千的job都…
需求与场景 上游某业务数据量特别大,进入到kafka一个topic中(当然了这个topic的partition数必然多,有人肯定疑问为什么非要把如此庞大的数据写入到1个topic里,历史留下的问题,现状就是如此庞大的数据集中在一个topic里).这就需要根据一些业务规则把这个大数据量的topic数据分发到多个(成百上千)topic中,以便下游的多个job去消费自己topic的数据,这样上下游之间的耦合性就降低了,也让下游的job轻松了很多,下游的job只处理属于自己的数据,避免成百上千的job都…
Data Sources 是什么呢?就字面意思其实就可以知道:数据来源. Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集.历史的数据集: 也可以用来做流处理,即实时的处理些实时数据流,实时的产生数据流结果,只要数据源源不断的过来,Flink 就能够一直计算下去,这个 Data Sources 就是数据的来源地. Flink 中你可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 来为你的程序添加数据来源. F…
前言 在第一篇介绍 Flink 的文章 <<从0到1学习Flink>-- Apache Flink 介绍> 中就说过 Flink 程序的结构 Flink 应用程序结构就是如上图所示: 1.Source: 数据源,Flink 在流处理和批处理上的 source 大概有 4 类:基于本地集合的 source.基于文件的 source.基于网络套接字的 source.自定义的 source.自定义的 source 常见的有 Apache kafka.Amazon Kinesis Stre…