pytorch torch.backends.cudnn设置作用】的更多相关文章

cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用 如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法 然后再设置: torch.backends.cudnn.benchmark = true 那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题 一般来讲,应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置  …
[转载]torch参数:torch.backends.cudnn.benchmark的意义 来源:https://zhuanlan.zhihu.com/p/73711222 完整版请看原文,这里只截取一部分结论性的东西: 设置 torch.backends.cudnn.benchmark=True 将会让程序在开始时花费一点额外时间,为整个网络的每个卷积层搜索最适合它的卷积实现算法,进而实现网络的加速.适用场景是网络结构固定(不是动态变化的),网络的输入形状(包括 batch size,图片大小…
设置这个 flag 可以让内置的 cuDNN 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题. 应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置  torch.backends.cudnn.benchmark = true  可以增加运行效率: 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率.…
大部分情况下,设置这个 flag 可以让内置的 cuDNN 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题. 一般来讲,应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率: 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率.…
Pytorch之训练器设置 引言 深度学习训练的时候有很多技巧, 但是实际用起来效果如何, 还是得亲自尝试. 这里记录了一些个人尝试不同技巧的代码. tensorboardX 说起tensorflow, 我就一阵头大, google强力的创造了一门新的语言! 自从上手Pytorch后, 就再也不想回去了. 但是tensorflow的生态不是一般的好, 配套设施齐全, 尤其是可视化神器tensorboard, 到了Pytorch这边, 幸好还有visdom和tensorboardX, 但是前者实在…
PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可以通过 torch.nn.xxx 和 torch.nn.functional.xxx 来实现. 首先可以观察源码: eg:torch.nn.Conv2d CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, p…
Pytorch中nn.Dropout2d的作用 首先,关于Dropout方法,这篇博文有详细的介绍.简单来说, 我们在前向传播的时候,让某个神经元的激活值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征 dropout方法有很多类型,图像处理中最常用的是Dropout2d,我从网上找了很多的中文资料,都没有让人满意的介绍,意外发现源代码dropout.py中的介绍还挺好的: Randomly zero out entire channels:A channel i…
PyTorch - torch.eq.torch.ne.torch.gt.torch.lt.torch.ge.torch.le 参考:https://flyfish.blog.csdn.net/article/details/106388548…
Vision layers 1)Upsample CLASS torch.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=None) 上采样一个给定的多通道的 1D (temporal,如向量数据), 2D (spatial,如jpg.png等图像数据) or 3D (volumetric,如点云数据)数据 假设输入数据的格式为minibatch x channels x [optional dept…
interpolate torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None) 根据给定的size或scale_factor参数来对输入进行下/上采样 使用的插值算法取决于参数mode的设置 支持目前的temporal(1D, 如向量数据), spatial(2D, 如jpg.png等图像数据)和volumetric(3D, 如点云数据)类型的…