如何才能将Faster R-CNN训练起来?】的更多相关文章

如何才能将Faster R-CNN训练起来? 首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installation-sufficient-for-the-demo 先用提供的 model 自己测试一下效果嘛... 按照官网安装教程,安装基本需求. Installation (sufficient for the demo) Clone the Faster R-CNN repository # Make…
关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大政府牵头投资的一个先进科学项目研究所. 说白了,就是看你穷的没钱搞研究,就施舍给你.Hinton.Bengio和他的学生在2004年拿到了Cifar投资的少量资金,建立了神经计算和自适应感知项目. 这个项目结集了不少计算机科学家.生物学家.电气工程师.神经科学家.物理学家.心理学家,加速推动了DL的进程.从这个阵容来看,DL已经…
接着上篇的博客,我们获取imdb和roidb的数据后,就可以搭建网络进行训练了. 我们回到trian_rpn()函数里面,此时运行完了roidb, imdb = get_roidb(imdb_name),取得了imdb和roidb数据. 先进入第一阶段的训练: print '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' print 'Stage 1 RPN, init from ImageNet model' print…
这周看完faster-rcnn后,应该对其源码进行一个解析,以便后面的使用. 那首先直接先主函数出发py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py 我们在后端的运行命令为 python  ./py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py --gpu0--net_nameZF--weightsdata/imagenet_models/ZF.v2.caffemodel--imdbvoc_2007…
1.训练太慢 用nimibatch代替fullbatch https://www.cnblogs.com/guoyaohua/p/8724433.html 2.过拟合 最直接的解决过拟合问题的办法是增加训练数据量 使用dropout层 3.损失率波动不下降,欠拟合(梯度消失) Batch Normalization 4.训练开始时后出现损失函数值为nan(梯度爆炸) 学习率太大…
算的的上是自己搭建的第一个卷积神经网络.网络结构比较简单. 输入为单通道的mnist数据集.它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积,输出64张特征图,然后使用2*2的池化核进行池化 输出7*7的图片 第三层为全连接层 我们总结有 7*7*64 个输入,输出1024个节点 ,使用relu作为激活函数,增加一个keep_prob的dropout…
1.样本要随机化,防止大数据淹没小数据 2.样本要做归一化.关于归一化的好处请参考:为何需要归一化处理3.激活函数要视样本输入选择(多层神经网络一般使用relu)4.mini batch很重要,几百是比较合适的(很大数据量的情况下)5.学习速率(learning rate)很重要,比如一开始可以lr设置为0.01,然后运行到loss不怎么降的时候,学习速率除以10,接着训练6.权重初始化,可用高斯分布乘上一个很小的数,这个可以看:权值初始化 7.Adam收敛速度的确要快一些,可结果往往没有sgd…
转自: http://weibo.com/p/1001603816330729006673 说明:这个翻译应该是来自原文:http://yyue.blogspot.hk/2015/01/a-brief-overview-of-deep-learning.html 翻译网上的哈,我觉得有很大一部分从没看到过,所以就翻译了下,如有不对的地方,欢迎指正:   1:准备数据:务必保证有大量.高质量并且带有干净标签的数据,没有如此的数据,学习是不可能的 2:预处理:这个不多说,就是0均值和1方差化 3:m…
四个层的forward函数分析: RoIDataLayer:读数据,随机打乱等 AnchorTargetLayer:输出所有anchors(这里分析这个) ProposalLayer:用产生的anchors平移整图,裁剪出界.移除低于阈值的的anchors,排序后使用nms,返回顶部排名的anchors ProposalTargetLayer:将proposals分配给gt物体.得出proposal的分类标签和box的回归目标. 紧接着之前的博客,我们继续来看faster rcnn中的Ancho…
安装环境:Ubuntu14.04.显卡Tesla K40C+GeForce GT 705.tensorflow1.0.0.pycharm5.0 说明:原文见博客园,有问题原文下留言,不定期回复.本文作者吴疆,转载请备注. 本文可解决的问题: 1.tensorflow1.0.0环境搭建 2.Ubuntu14.04安装pycharm5.0 3.Ubuntu14.04上跑通faster rcnn_TF的demo程序 4.Ubuntu14.04上跑通faster rcnn_TF的训练过程 安装步骤如下:…