2017年排名前15的数据科学python库 2017-05-22 Python程序员 Python程序员 Python程序员 微信号 pythonbuluo 功能介绍 最专业的Python社区,有每日推送,免费电子书,真人辅导,资源下载,各类工具.我已委托“维权骑士”(rightknights.com)为我的文章进行维权行动 Python部落(python.freelycode.com)组织翻译,禁止转载,欢迎转发. 最近几年,python在数据科学领域展现出极大的生命力.在这里,我们根据实践…
Python 在解决数据科学任务和挑战方面继续处于领先地位.业已证明最有帮助的Python库,我们选择 20 多个库,因为其中一些库是相互替代的,可以解决相同的问题.因此,我们将它们放在同一个分组. 核心库和统计数据 1. NumPy (提交:17911,撰稿人:641) 官网:http://www.numpy.org/ NumPy 是科学应用程序库的主要软件包之一,用于处理大型多维数组和矩阵,它大量的高级数学函数集合和实现方法使得这些对象执行操作成为可能. 2. SciPy (提交:19150…
除了 pandas.scikit-learn 和 matplotlib,还要学习一些用 Python 进行数据科学的新技巧. Python 是一种令人惊叹的语言.事实上,它是世界上增长最快的编程语言之一.它一次又一次地证明了它在各个行业的开发者和数据科学者中的作用.Python 及其库的整个生态系统使其成为全世界用户的恰当选择,无论是初学者还是高级用户.它成功和受欢迎的原因之一是它的一组强大的库,使它如此动态和快速. 在本文中,我们将看到 Python 库中的一些数据科学工具,而不是那些常用的工…
为什么说 Python 是数据科学的发动机(一)发展历程(附视频中字) 在PyData Seattle 2017中,Jake Vanderplas介绍了Python的发展历程以及最新动态.在这里我们把内容分成上下两篇,先给大家带来上篇--Python的发展历程. 主讲人: Jake Vanderplas是华盛顿大学eScience研究所物理科学研究的负责人.该研究所负责跨学科项目,旨在支持科学领域在数据方面发现.Jake的研究领域包括天文学.天体物理学.机器学习以及可伸缩计算.此外,他是许多开源…
原文链接:Data Science For Banking & Insurance 如果不能正常访问,请点击备份获取. 在银行和保险行业应用数据科学 互联网巨头和金融技术创业时代的求生和发展 介绍 在数个世纪的进程中,银行和保险行业开发出的程序.产品和基础设施,塑造了整个人类的经济史. 但是现在,他们正面临着消亡的威胁,而挑战者们出现在世界舞台上只是几十年的事,甚至其中几个就出现在短短几年前.尽管如此,却正是这些后来者正在重新制定金融服务的行业规则.这些挑战者包括像 Google.亚马逊.Fac…
注:很早之前就打算专门写一篇与Python数据可视化相关的博客,对一些基本概念和常用技巧做一个小结.今天终于有时间来完成这个计划了! 0. Python中常用的可视化工具 Python在数据科学中的地位,不仅仅是因为numpy, scipy, pandas, scikit-learn这些高效易用.接口统一的科学计算包,其强大的数据可视化工具也是重要组成部分.在Python中,使用的最多的数据可视化工具是matplotlib,除此之外还有很多其他可选的可视化工具包,主要包括以下几大类: matpl…
Python数据科学手册Seaborn马拉松可视化里时分秒转化为秒数的问题 问题描述: 我实在是太懒了,问题描述抄的网上的哈哈哈:https://www.jianshu.com/p/6ab7afa059d1 在做Python Data Science Handbook的实例学习,4.16.3 案例:探索马拉松比赛成绩里,有提示将时分秒的时间化为秒的总数,以方便画图.书里给出的指令是: data['split_sec']=data['split'].astype(int)/1E9 data['fi…
建议:如果只是处理(小)数据的,用R.结果更可靠,速度可以接受,上手方便,多有现成的命令.程序可以用.要自己搞个算法.处理大数据.计算量大的,用python.开发效率高,一切尽在掌握. 概述 在真实的数据科学世界里,我们会有两个极端,一个是业务,一个是工程.偏向业务的数据科学被称为数据分析(Data Analysis),也就是A型数据科学.偏向工程的数据科学被称为数据构建(Data Building),也就是B型数据科学. 从工具上来看,按由业务到工程的顺序,这个两条是:EXCEL >> R…
Python 在解决数据科学任务和挑战方面继续处于领先地位.去年,我们曾发表一篇博客文章 Top 15 Python Libraries for Data Science in 2017,概述了当时业已证明最有帮助的Python库.今年,我们扩展了这个清单,增加了新的 Python 库,并重新审视了去年已经讨论过的 Python 库,重点关注了这一年来的更新. 我们的选择实际上包含了 20 多个库,因为其中一些库是相互替代的,可以解决相同的问题.因此,我们将它们放在同一个分组. ▌核心库和统计数…
文章提纲 全书总评 C01.Python 介绍 Python 版本 Python 解释器 Python 之禅 C02.Python 基础知识 基础知识 流程控制: 函数及异常 函数: 异常 字符串 获取键盘输入: 字符串处理 字符串操作 正则表达式 C05. 容器(Container)与集合(Collections) 元组(Tuple) 列表(List) 字典(Dictionary) 集合(Collections) C06.Python 标准库 数学模块:math 时间模块:time,datet…
Python数据科学手册(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1KurSdjNWiwMac3o3iLrzBg 提取码:qogy 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介  · · · · · · 本书是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.本书共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供ndarr…
Python是门很神奇的语言,历经时间和实践检验,受到开发者和数据科学家一致好评,目前已经是全世界发展最好的编程语言之一.简单易用,完整而庞大的第三方库生态圈,使得Python成为编程小白和高级工程师的首选. 在本文中,我们会分享不同于市面上的python数据科学库(如numpy.padnas.scikit-learn.matplotlib等),尽管这些库很棒,但是其他还有一些不为人知,但同样优秀的库需要我们去探索去学习. 1. Wget 从网络上获取数据被认为是数据科学家的必备基本技能,而Wg…
摘要: 本文讲述了热图.二维密度图.蜘蛛图.树形图这四种Python数据可视化方法. 数据可视化是任何数据科学或机器学习项目的一个重要组成部分.人们常常会从探索数据分析(EDA)开始,来深入了解数据,并且创建可视化确实有助于让问题更清晰和更容易理解,尤其是对于那些较大的高维度数据集.在项目结束的时候,能够以清晰的.简洁的和令人信服的方式呈现最终结果,这是非常重要的,让你的用户能够理解和明白. 你可能已经看过了我之前的文章<5种快速和简单的Python数据可视化方法(含代码)>(5 Quick…
Python是一种神奇的语言.事实上,它是近几年世界上发展最快的编程语言之一,它一次又一次证明了它在开发工作和数据科学立场各行业的实用性.整个Python系统和库是对于世界各地的用户(无论是初学者或者高级)都是一个恰当的选择.其成功和受欢迎的原因之一是它强大的库,这些库使其具有动态性和快速性. 在本文中,我们将看到一些除了常用的像pandas.scikit-learn. matplotlib之外的数据科学任务的Python库.虽然一看见像pandas,scikit-learn这些库就让人脑子浮现…
我用了两天左右的时间完成了这一门课<Introduction to Python for Data Science>的学习,之前对Python有一些基础,所以在语言层面还是比较顺利的,这门课程的最大收获是让我看到了在数据科学中Python的真正威力(也理解了为什么Python这么流行),同时本次课程的交互式练习体验(Datacamp)非常棒.     这门课程主要包括了6个单元的内容,一开始介绍了Python的基本概念(常见数据类型和变量),从第二节开始讲解列表在Python中的使用,并且逐步…
第一章:准备工作环境 WinPython-32bit-3.5.2.2Qt5.exe 1.1 设置matplotlib参数 配置模板以方便各项目共享 D:\Bin\WinPython-32bit-3.5.2.2Qt5\python-3.5.2\Lib\site-packages\matplotlib\mpl-data 三种方式: 当前工作目录 用户级 Documents and Setting 安装级配置文件 D:\Bin\WinPython-32bit-3.5.2.2Qt5\python-3.5…
使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机器学习专家来说,Python 通常是最好的选择(比如,Andrey Bulezyuk 使用 Python 语言创造了一个优秀的机器学习应用程序). 由于 Python 的广泛使用,因此它拥有大量的库,使得数据科学家能够很容易地完成复杂的任务,而且不会遇到许多编码困难.下面列出 3 个用于数据科学的顶…
所属网站分类: 资源下载 > python电子书 作者:today 链接:http://www.pythonheidong.com/blog/article/448/ 来源:python黑洞网 内容简介 本书是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.本书共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操…
作为一个理工男.用过了形形色色能够用于科学作图/数据可视化软件:从大学时做实验课推荐用于分析简单採集数据的 Origin; 毕业论文时用来呈现实验时序信号和离线分析脑电信号的 MATLAB.后面还发现了 Octave 以及 Gnuplot : 以及实验室师兄推荐用的 Matplotlib 软件; 工作后随着 HTML5 大红大紫,也发现了一些基于 Web 前端的软件,比方 d3js/Highcharts, 还有 Python 的 Bokeh-- 这些软件都有各自的优缺点,因为自己平时工作会做一些…
如果有一定的数据分析与机器学习理论与实践基础,<Python数据科学手册>这本书是绝佳选择. 是对以数据深度需求为中心的科学.研究以及针对计算和统计方法的参考书.很友好实用,结构很清晰.但不适合数据分析的入门的学习人员,尤其matplotlib与机器学习部分,虽点到为止切到要害,但没有一定的基础,很难通顺的走完每个章节,每个小节.而且不是查查文档,看看资料就能解决的. 中文版PDF,474页,带目录和书签,文字能够复制粘贴:附源代码. 英文版PDF,548页,带目录和书签,文字能够复制粘贴.…
<Python数据科学手册>共五章,每章介绍一到两个Python数据科学中的重点工具包.首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境:第2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组:第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据:第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能:第5章以Scikit-Learn为主,这个程序库…
NumPy NumPy(数值 Python 的简称)是其中一个顶级数据科学库,它拥有许多有用的资源,从而帮助数据科学家把 Python 变成一个强大的科学分析和建模工具.NumPy 是在 BSD 许可证的许可下开源的,它是在科学计算中执行任务的基础 Python 库.SciPy 是一个更大的基于 Python 生态系统的开源工具,而 NumPy 是 SciPy 非常重要的一部分. NumPy 为 Python 提供了大量数据结构,从而能够轻松地执行多维数组和矩阵运算.除了用于求解线性代数方程和其…
<Python数据科学手册>[美]Jake VanderPlas著 陶俊杰译 Absorb what is useful, discard what is not, and  add what is uniquel what own.(取其精华,去其糟粕,再加点自己的独创.) 本书在GitHub上开源:https://github.com/jakevdp/PythonDataScienceHandbook 作者在博客发布Notebook的HTML版本:https://jakevdp.githu…
前言 本文讲解了从零开始学习Python数据科学的全过程,涵盖各种工具和方法 你将会学习到如何使用python做基本的数据分析 你还可以了解机器学习算法的原理和使用 说明 先说一段题外话.我是一名数据工程师,在用SAS做分析超过5年后,决定走出舒适区,寻找其它有效的数据分析工具,很快我发现了Python! 我非常喜欢编程,这是我真正喜欢做的事情.事实证明,编程并没有想象中的那么难. 我在一周之内学习了Python的基本语法,接着我一方面继续深入探索Python,另一方面帮助其他人学习这门语言.P…
Python在数据科学中的地位,不仅仅是因为numpy, scipy, pandas, scikit-learn这些高效易用.接口统一的科学计算包,其强大的数据可视化工具也是重要组成部分.在Python中,使用的最多的数据可视化工具是matplotlib,除此之外还有很多其他可选的可视化工具包,主要包括以下几大类: matplotlib以及基于matplotlib开发的工具包:pandas中的封装matplotlib API的画图功能,seaborn,networkx等: 基于JavaScrip…
本文对应脚本已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 我们平时在数据可视化或空间数据分析的过程中经常会需要某个地区的道路网络及节点数据,而OpenStreetMap就是一个很好的数据来源(譬如图1柏林路网): 图1 通常我们可以在 https://www.openstreetmap.org/export 中选择矩形区域内的路网矢量数据进行下载,但这种方式对选择区域的大小有一定限制,想获取较大范围区域…
本文示例代码及数据已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 Kepler.gl作为一款强大的开源地理信息数据可视化工具,可以帮助我们轻松制作针对大规模矢量数据的可视化作品,从而辅助数据分析工作. Kepler.gl制作常规地图非常简单方便,稍微摸索一下仪表盘界面就可以get到用法,但有些特殊的地图则需要额外对数据进行处理或使用Kepler.gl中的一些隐藏功能,譬如之前写过的(数据科学学习手札85)…
<数据可视化之美>高清PDF全彩版|百度网盘免费下载|Python数据可视化 提取码:i0il 内容简介 <数据可视化之美>内容简介:可视化是数据描述的图形表示,旨在一目了然地揭示数据中的复杂信息.可视化的典型如纽约地铁图和人脑图.成功的可视化的美丽之处既在于其艺术设计,也在于其通过对细节的优雅展示,能够有效地产生对数据的洞察和新的理解. 在<数据可视化之美>中,20多位可视化专家包括艺术家.设计师.评论家.科学家.分析师.统计学家等,展示了他们如何在各自的学科领域内开…
核心库与统计 1. NumPy(提交:17911,贡献者:641) 一般我们会将科学领域的库作为清单打头,NumPy 是该领域的主要软件库之一.它旨在处理大型的多维数组和矩阵,并提供了很多高级的数学函数和方法,因此可以用它来执行各种操作. 在过去一年,开发团队对该库进行了大量改进.除了错误修复和解决兼容性问题之外,关键的变更还包括样式改进,即 NumPy 对象的打印格式.此外,一些函数现在可以处理任意编码的文件,只要这些编码受 Python 支持. 2. SciPy(提交:19150,贡献者:6…
来源:15 Python Snippets to Optimize your Data Science Pipeline 翻译:RankFan 15种Python片段去优化你的数据科学管道 为什么片段对于数据科学是重要的 在我的日常中,我经常处理许多同样的状况,主要是从加载 csv 文件到数据可视化.因此,为了流水线这个过程,我有兴趣去储存一些 code 片段, 在不同的情形下,加载csv文件到数据可视化是非常有帮助的. 在这篇短文中,我将分享15个Python片段去简化你不同的数据分析管道.…