[Pytorch框架] 3.1 logistic回归实战】的更多相关文章

利用sklearn.linear_model.LogisticRegression训练和测试算法. 示例代码: import numpy as np import matplotlib.pyplot as plt import random from sklearn.linear_model import LogisticRegression def stocGradAscent1(dataMatrix, classLabels, numIter=150): #随机梯度上升算法 m,n = np…
1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid函数分类:logistic回归想要的函数可以接受全部的输入然后预測出类别.这个函数就是sigmoid函数,它也像一个阶跃函数.其公式例如以下: 当中: z = w0x0+w1x1+-.+wnxn,w为參数, x为特征 为了实现logistic回归分类器,我们能够在每一个特征上乘以一个回归系数,然后把…
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018-10-26机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid函数分类 4.2 基于最优化方法的最佳回归系数确定 4.2.1 梯度上升算法: 4.2.2 测试算法:使用梯度上升算法找到最佳参数 4.2.3 分析数据:画出决策边界 4.2.4 训练算法:随机梯度上升 4.3 示例1:从疝气病症预测病马的死亡率 4.4 示例2:从打斗数和接吻数预测电影类型(数据自…
解释 Logistic回归用于寻找最优化算法. 最优化算法可以解决最XX问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大? 我们可以看到最XX问题,有寻找最小(最短时间)和最大等. 解决最小类问题会使用梯度下降法.可以想象为在一个山坡上寻找最陡的下坡路径. 同理,解决最大类问题会使用梯度上升法.可以想象为在一个山坡上寻找最陡的上坡路径. 寻找最优化算法,可以通过试图找到一个阶跃函数(step function),由于阶跃函数只返回…
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归.进而可以得到对这些点的拟合直线方程,那么我们根据这个回归方程,怎么进行分类呢?请看下面. 二值型输出分类函数 我们想要的函数应该是: 能接受所有的输入然后预测…
Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式,以此进行分类. 须知概念 Sigmoid 函数 回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归.进而可以得到对这些点的拟合直线方程,那么我们根据这个回归方程,怎么进行分类呢?请看下面. 二值型输出分类函数 我们想要的函数应该是:…
注释:Ng的视频有完整的推到步骤,不过理论和实践还是有很大差别的,代码实现还得完成 1.Logistic回归理论 http://www.cnblogs.com/wjy-lulu/p/7759515.html,Ng的推导很完美,看懂就可以了,没必要自己推导一遍,因为几天不用就忘记 了. 2.代码实现 2.1全局梯度上升 每次训练针对整体,依据整体去找最值. 好处:容易过滤局部极值,找到真正的全局极值. 坏处:整体数据太多,花费时间太久,而且新来的样本必须重新训练. 推倒公式:见博文刚开始的链接,N…
1. 利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类. 2.sigmoid函数的分类 Sigmoid函数公式定义 3.梯度上升法    基本思想:要找个某个函数的最大值,最好的方法是沿着该函数的梯度方向探寻. 梯度上升算法用来求函数的最大值,对函数求导来得到 4.梯度下降算法    用来求函数的最小值  …
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. LR 正则化 3.1 L1 正则化 3.2 L2 正则化 3.3 L1正则化和L2正则化的区别 4. RL 损失函数求解 4.1 基于对数似然损失函数 4.2 基于极大似然估计 二. 梯度下降法 1. 梯度 2. 梯度下降的直观解释 3. 梯度下降的详细算法 3.1 梯度下降法的代数方式描述 3.2…