PGM学习之二 PGM模型的分类与简介】的更多相关文章

废话:和上一次的文章确实隔了太久,希望趁暑期打酱油的时间,将之前学习的东西深入理解一下,同时尝试用Python写相关的机器学习代码. 一 PGM模型的分类 通过上一篇文章的介绍,相信大家对PGM的定义和大致应用场景有了粗略的了解.那么接下来我们来深入了解下PGM. 首先要介绍的是Probabilistic models(概率模型),常用来描述不同的随机变量之前的关系,主要针对变量或变量间的相互不确定性的概率关系建模.总的来说,概率模型分为两类: 一类是参数模型-可以用有限个参数进行准确定义 参数…
今日份整理为模型层 1.ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员的工作量,不需要面对因数据库变更而导致的无效劳动ORM是"对象-关系-映射"的简称. 不过使用ORM也是有优缺点的 优点: 写python代码,实现对数据库的相关操作,提高开发效率 平滑切换数据库,在多表链接的时候是很明显的 缺点: python代码,转换SQL需要时…
PV计算模型 现有的PV计算公式是: 每台服务器每秒平均PV量 =( (总PV*80%)/(24*60*60*40%))/服务器数量 =2*(总PV)/* (24*60*60) /服务器数量 通过定积分求整个分布图的面积,然后求出最高值附近范围内的定积分,可以求得占据了80%的pv量的总时间.根据这个数据,得出计算pv的公式变成: 每台服务器每秒平均PV量= ( (80%*总PV)/(24*60*60*(9/24)))/服务器数量 即 每台服务器每秒平均PV量=2.14*(总PV)/* (24*…
一.IOC(控制反转) 定义:反转控制 (Inversion Of Control)的缩写,即创建对象的反转控制. 正向控制:若要使用某个对象,需要自己去负责对象的创建. 反向控制:若要使用某个对象,只需要从 Spring 容器中获取需要使用的对象,不关心对象的创建过程,也就是把创建对象的控制权反转给了Spring框架. 例子:在现实生活中,人们要用到一样东西的时候,第一反应就是去找到这件东西,比如想喝新鲜橙汁,在没有饮品店的日子里,最直观的做法就是:买果汁机.买橙子,然后准备开水. 值得注意的…
PV->TPS转换模型 由上一篇“性能测试学习之二 ——性能测试模型(PV计算模型)“ 得知 TPS = ( (80%*总PV)/(24*60*60*(T/24)))/服务器数量 转换需要注意: 1.性能测试脚本中,只保留与性能点相关的内容,异步处理的,保留多个请求:2.在执行场景中,不模拟浏览器缓存,确保每次请求都到达应用服务器:3.在执行场景中,每次迭代,都模拟一个新用户,而且清除用户缓存信息,确保每个用户每次发送请求都是全新的. TPS波动模型 TPS表现轨迹可以总结为两大类: 1. TP…
之前自己做实验也用过MRF(Markov Random Filed,马尔科夫随机场),基本原理理解,但是很多细节的地方都不求甚解.恰好趁学习PGM的时间,整理一下在机器视觉与图像分析领域的MRF的相关知识. 打字不易,转载请注明.http://blog.csdn.net/polly_yang/article/details/9716591 在机器视觉领域,一个图像分析问题通常被定义为建模问题,图像分析的过程就是从计算的观点来求解模型的过程.一个模型除了可以表达成图形的形式外,通常使用一个目标函数…
一 课程基本信息 本课程是由Prof.Daphne Koller主讲,同时得到了Prof. Kevin Murphy的支持,在coursera上公开传播.在本课程中,你将学习到PGM(Probabilistic Graphical Models)表示的基本理论,以及如何利用人类自身的知识和机器学习技术来构建PGM:还将学习到使用PGM算法来对有限.带噪声的证据提取结论,在不确定条件下做出正确的抉择.该课程不仅包含PGM框架的理论基础,还有将这些技术应用于新问题的实际技巧. 本课程包含以下主题:…
  近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文将对 FM 框架进行简介,并对其训练算法 - 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行具体推导. 相关链接: (一)预測任务 (二)模型方程 (三)回归和分类 (四)学习算法 作者: peghoty 出处: http://blog.csdn.net/itplus/article/det…
目录 一.经验误差与过拟合 二.评估方法 模型评估方法 1. 留出法(hold-out) 2. 交叉验证法(cross validation) 3. 自助法(bootstrapping) 调参(parameter tuning)和最终模型 数据集(data set) 三.性能度量(performance measure) 1. 回归任务的性能度量 1.1 均方误差.均方根误差 1.2 平方绝对误差 1.3 确定系数\(R^2\) 2. 分类任务的性能度量 2.1 错误率.精度 2.2 查准率.查…
前言: 这次练习完成的是图模型的近似推理,参考的内容是coursera课程:Probabilistic Graphical Models . 上次实验PGM练习四:图模型的精确推理 中介绍的是图模型的精确推理,但在大多数graph上,其精确推理是NP-hard的,所以有必要采用计算上可行的近似推理.本实验中的近似推理分为2个部分,LBP(loop belief propagation算法)和MCMC采样.实验code可参考:实验code可参考网友的:code. 算法流程: LBP(loop be…