EM算法浅析(一)-问题引出】的更多相关文章

EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.基本认识 EM(Expectation Maximization Algorithm)算法即期望最大化算法.这个名字起的很理科,就是把算法中两个步骤的名称放到名字里,一个E步计算期望,一个M步计算最大化,然后放到名字里就OK. EM算法是一种迭代算法,是1977年由Demspster等人总结提出,用于有隐含变量的概率模型参数的极大似然估计,或极大后验概率估计.这里可以注意下,EM算法是针对于有…
EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.EM算法简介 在EM算法之一--问题引出中我们介绍了硬币的问题,给出了模型的目标函数,提到了这种含隐变量的极大似然估计要用EM算法解决,继而罗列了EM算法的简单过程,当然最后看到EM算法时内心是懵圈的,我们也简要的分析了一下,希望你在看了前一篇文章后,能大概知道E步和M步的目的和作用.为了加深一下理解,我们回过头来,重新看下EM算法的简单介绍: 输入:观测变量数据Y,隐变量数据Z,联合分布$P…
极大似然估计是利用已知的样本结果,去反推最有可能(最大概率)导致这样结果的参数值,也就是在给定的观测变量下去估计参数值.然而现实中可能存在这样的问题,除了观测变量之外,还存在着未知的隐变量,因为变量未知,因此无法直接通过最大似然估计直接求参数值.EM算法是一种迭代算法,用于含有隐变量的概率模型的极大似然估计,或者说是极大后验概率估计. 1.经典的三硬币模型 引入一个例子来说明隐变量存在的问题.假设有3枚硬币,分别记作A,B,C.这些硬币正面出现的概率分别是π,p,q.我们的实验过程如下,先投掷硬…
Expectation Maximization, 字面翻译为, "最大期望". 我个人其实一直都不太理解EM算法, 从我个人的渊源来看, 之前数理统计里面的参数估计, 也是没有太理解. 但困难总是要面对, 必须啃下它, 因其真的不太直观, 所以先举个经典的栗子. 栗子-硬币正面概率 理想我是上帝 假设咱有两个硬币, 分别为 coin A 和 coin B 同样假设我们上帝, 知道做实验是用的哪个硬币 的情况下, 扔的结果如下: (H 表正面, T表反面) B: H T T T H H…
讲到 EM 算法就不得不提极大似然估计,我之前讲过,请参考我的博客 下面我用一张图解释极大似然估计和 EM 算法的区别 EM 算法引例1-抛3枚硬币 还是上图中抛硬币的例子,假设最后结果正面记为1,反面记为0,抛10次,结果为 1101001011: 下面我用数据公式解释下这个例子和 EM 算法: 三硬币模型可以写作 θ 表示模型参数,即 三枚硬币正面的概率,用 π p q 表示: y 表示观测随机变量,取值为 0,1: z 表示隐随机变量,在本例中就是 A 的正反面,或者是选择 B 还是不选择…
1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的. 凸集:在凸几何中,凸集(convex set)是在凸组合下闭合的仿射空间的子集.更具体地说,在欧氏空间中,凸集是对于集合内的每一对点,连接该对点的直线段上的每个点也在该集合内.例如,立方体是凸集,但是任何中空的或具有凹痕的例如月牙形都不是凸集.特别的,凸集,实数R上(或复数C上)…
EM算法 各类估计 最大似然估计 Maximum Likelihood Estimation,最大似然估计,即利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值的计算过程. 直白来讲,就是给定了一定的数据,假定知道数据是从某种分布中随机抽取出来的,但是不知道这个分布具体的参数值,即:模型已知,参数未知,而MLE就是用来估计模型的参数. MLE的目标是找出一组参数(模型中的参数),使得模型产出观察数据的概率最大. \[arg~max_θP(X;θ) \] MLE求解过程 写出似然函数…
EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求极大(Maximization). EM算法的引入 给一些观察数据,可以使用极大似然估计法,或贝叶斯估计法估计模型参数.但是当模型含有隐变量时,就不能简单地使用这些方法.有些时候,参数的极大似然估计问题没有解析解,只能通过迭代的方法求解,EM算法就是可以用于求解这个问题的一种迭代算法. EM算法 输…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 k-means算法是一种得到最广泛使用的聚类算法. 它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点. 2.算法推导 2.1 k-means 计算过程: 深入:如何验证收敛: 我们定义畸变函数(distortion function)如下: J函数表示每个样本点到其质心的距离平方和.K-means是要将J调整到最小.假设当前J没有达到最小值,那么首先可以固定每…
EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶斯网络中. 下面主要介绍EM的整个推导过程. 1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那…