sift算法c语言实现】的更多相关文章

前段时间在做三维測量方面的研究.须要得到物体表面三维数据.sift算法是立体匹配中的经典算法.以下是对RobHess的SIFT源码的凝视.部分内容參考网上,在这里向各位大神表示感谢. http://blog.csdn.net/lsh_2013/article/details/46826141 头文件及函数声明 #include "sift.h" #include "imgfeatures.h" #include "utils.h" #includ…
原文:http://blog.csdn.net/v_JULY_v/article/details/6555899 SIFT算法的应用 -目标识别之用Bag-of-words模型表示一幅图像 作者:wawayu,July.编程艺术室出品. 出处:http://blog.csdn.net/v_JULY_v . 引言 本blog之前已经写了四篇关于SIFT的文章,请参考九.图像特征提取与匹配之SIFT算法,九(续).sift算法的编译与实现,九(再续).教你一步一步用c语言实现sift算法.上,及九(…
 备注:源代码还未理解,所以未附上——下周任务 一.SIFT算法 1.算法简介 尺度不变特征转换即SIFT (Scale-invariant feature transform)是一种计算机视觉的算法.它用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 David Lowe在1999年所发表,2004年完善总结.局部影像特征的描述与侦测可以帮助辨识物体,SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关.对于光线.噪声.些…
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature TransformSIFT Just For Fun zdd  zddmailgmailcom or zddhubgmailcom SIFT综述 高斯模糊 1二维高斯函数 2 图像的二维高斯模糊 3分离高斯模糊 1 尺度空间理论 2 尺度空间的表示 3 高斯金字塔的构建 尺度空间在实现时使用高斯金…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 Da…
原博客来自:http://blog.csdn.net/zddblog/article/details/7521424 定义: 尺度不变特征转化是一种计算机视觉算法,用于侦测和描述物体的局部性特征,在空间尺度中寻找极值点,这个点是关于大小,明暗,仿射变换稳定的,由David Lowe在1999年发表,2004年总结. 应用场景: 物体识别.机器人地图感知与导航.影像缝合.3d场景建立.手势识别.影像追踪.动作对比. 专利所属: 英属哥伦比亚大学. 简述: 局部影像特征的描述与侦测可以帮助识别物体,…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.确定描述子采样区域 2.生成描述子 2.1 旋转图像至主方向 2.2 生成特征向量 3.归一化特征向量 附:SIFT开源代码集 1 确定描述子采样区域 SIFI 描述子h(x, y, θ)是对特征点附近邻域内高斯图像梯度统计结果的一种表示,它是一个三维的阵列,但通常将它表示成一个矢量.矢量是通过对三维阵列按一定规律进行排列得到的.特征描述子与特…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.计算邻域梯度方向和幅值 2.计算梯度方向直方图 3.确定特征点方向 1 计算邻域梯度方向和幅值 为了实现图像旋转的不变性,需要根据检测到的特征点的局部图像结构求得一个方向基准.我们使用图像梯度的方法求取该局部结构的稳定方向.对于己经检测到特征点,我们知道该特征点的尺度值σ,因此根据这一尺度值,在GSS中得到最接近这一尺度值的高斯图像.然后使用有…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.找寻 2.定位 3.优化 1 KeyPoint找寻 极值的检测是在DoG空间进行的,检测是以前点为中心,3pixel*3pixel*3pixel的立方体为邻域,判断当前点是否为局部最大或最小.如下图所示,橘黄色为当前检测点,绿色点为其邻域.因为要比较当前点的上下层图像,所以极值检测从DoG每层的第2幅图像开始,终止于每层的倒数第2幅图像(第1幅…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.高斯尺度空间(GSS - Gauss Scale Space) 2.高斯差分(DOG - Difference of Gauss) 2.1 生产DoG 2.2 为什么用DoG来检测特征点 3.GSS尺度选择 3.1 GSS中尺度值的产生 3.2 高斯核性质及其在SIFT中的应用 1 GSS(Gauss Scale-space) It has b…