推荐系统 BPR 算法求解过程】的更多相关文章

数据假设: 每个用户之间的偏好行为相互独立 同一用户对不同物品的偏序相互独立 则优化问题为极大化如下目标: [Reference] 1.论文翻译:BPR:面向隐偏好数据的贝叶斯个性化排序学习模型 2.BPR [Bayesian Personalized Ranking] 算法详解及应用实践…
先前的是:推荐系统之 BPR 算法及 Librec的BPR算法实现[1] LibREC源码里的BPR算法的输入比较是:“(购买+点击)v.s.没出现的”,先前有修改过一次是让输入比较对为:“购买v.s. 点击”. 现在的情况是:以上二者结合起来,即比较对是:“(购买+点击)v.s.没出现的”+“购买v.s. 点击”的比较对.   就比如,购买了1,点击了2,而未出现的设为3和4(隐式 item). 原先代码默认的比较对比较方式(正样本>负样本)是:1>3:1>4:2>3:2>…
[推荐系统之 BPR 算法] 1.关于BPR的论文原文: BPR: Bayesian Personalized Ranking from Implicit Feedback 2.参考1:论文快读 - BPR: Bayesian Personalized Ranking from Implicit Feedback   (该博主的网站不错,尤其论文快读模块) 3.参考2:结合librec源代码读论文:Bayesian personalized ranking系列方法 (该博主的网站亦不错) [Li…
在矩阵分解在协同过滤推荐算法中的应用中,我们讨论过像funkSVD之类的矩阵分解方法如何用于推荐.今天我们讲另一种在实际产品中用的比较多的推荐算法:贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR),它也用到了矩阵分解,但是和funkSVD家族却有很多不同之处.下面我们来详细讨论. 1.  BPR算法使用背景 在很多推荐场景中,我们都是基于现有的用户和商品之间的一些数据,得到用户对所有商品的评分,选择高分的商品推荐给用户,这是funkSVD之类算法的…
精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合呢?我们采用回溯法 矩阵1: 先假定选择第1行,如下所示: 如上图中所示,红色的那行是选中的一行,这一行中有3个1,分别是第3.5.6列. 由于这3列已经包含了1,故,把这三列往下标示,图中的蓝色部分.蓝色部分包含3个1,分别在2行中,把这2行用紫色标示出来 根据定义,同一列的1只能有1个,故紫色的…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
在“跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题”一文中介绍了舞蹈链(Dancing Links)算法求解精确覆盖问题. 本文介绍该算法的实际运用,利用舞蹈链(Dancing Links)算法求解数独 在前文中可知,舞蹈链(Dancing Links)算法在求解精确覆盖问题时效率惊人. 那利用舞蹈链(Dancing Links)算法求解数独问题,实际上就是下面一个流程 1.把数独问题转换为精确覆盖问题 2.设计出数据矩阵 3.用舞蹈链(Dancing Links)算法…
概述 前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 详细 代码下载:http://www.demodashi.com/demo/10267.html 前段时间在搞贪心算法,为了举例,故拿TSP来开刀,写了段求解算法代码以便有需之人,注意代码考虑可读性从最容易理解角度写,没有优化,有需要可以自行优化! 一.TPS问题 TSP问题(Travelling Salesman Problem)即旅行商…
斯坦福大学机器学习,EM算法求解高斯混合模型.一种高斯混合模型算法的改进方法---将聚类算法与传统高斯混合模型结合起来的建模方法, 并同时提出的运用距离加权的矢量量化方法获取初始值,并采用衡量相似度的方法来融合高斯分量.从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型在识别率上有所提高. ------------------------------ 高斯模型有单高斯模型(SGM)和混合高斯模型(GMM)两种. (1)单高斯模型: 为简单起见,阈值t的选取一般靠经验值…