一.环境搭建 1. 编译spark 1.3.0 1)安装apache-maven-3.0.5 2)下载并解压 spark-1.3.0.tgz 3)修改make-distribution.sh  VERSION= SCALA_VERSION=2.10 SPARK_HADOOP_VERSION=-cdh5.3.6 SPARK_HIVE= #VERSION=$(>/dev/) #SPARK_HADOOP_VERSION=$(>/dev/null\ # | grep -v "INFO&quo…
一.Flume安装 参考:Flume 简介及基本使用 二.Sqoop安装 参考:Sqoop简介与安装 三.Flume和Sqoop结合使用案例 日志分析系统整体架构图: 3.1配置nginx环境 请参考菜鸟教程: https://www.runoob.com/linux/nginx-install-setup.html 按照上述步骤安装完后,需要对nginx配置下访问日志格式: 编辑nginx.conf,默认安装路径在/etc/nginx下 cd /etc/nginx vim nginx.conf…
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce.因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文.具体如下! 事前准备 在进行整合之前,首先确保Hive.HBase.Spark的环境已经搭建成功!如果没有成功搭建,具体可以看我之前写的大数据学习系…
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合HBase,并且测试成功了.在之前的大数据学习系列之一 ----- Hadoop环境搭建(单机) : http://www.panchengming.com/2017/11/26/pancm55/ 中成功的搭建了Hadoop的环境,本文主要讲的是Hadoop+Spark 的环境.虽然搭建的是单机版,…
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭…
一.环境搭建 1. <OD大数据实战>Hadoop伪分布式环境搭建 2. <OD大数据实战>Hive环境搭建 3. <OD大数据实战>Sqoop入门实例 4. <OD大数据实战>Flume入门实例 5. <OD大数据实战>Kafka入门实例 6. <OD大数据实战>Oozie环境搭建 7. <OD大数据实战>HBase环境搭建 二.数据分析平台架构 https://www.processon.com/diagraming/…
http://www.csdn.net/article/2014-06-05/2820089 摘要:MapReduce在实时查询和迭代计算上仍有较大的不足,目前,Spark由于其可伸缩.基于内存计算等特点,且可以直接读写Hadoop上任何格式的数据,逐渐成为大数据处理的新宠,腾讯分享了Spark的原理和应用案例. [编者按]MapReduce由于其设计上的约束只适合处理离线计算,在实时查询和迭代计算上仍有较大的不足,而随着业务的发展,业界对实时查询和迭代分析有更多的需求,单纯依靠MapReduc…
成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师.开发设计人员的工作水平,旨在培养专业的大数据Hadoop与Spark技术架构专家,更好地服务于各个行业的大数据项目开发和落地实施. 2015年近期公开课安排:(全国巡回开班) 08月21日——08月23日大连 09月23日——09月25日北京 10月16日——10月18日成都 11月27日——11…
随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的需求.目前对大数据的分析工具,首选的是Hadoop/Yarn平台,但目前对大数据的实时分析工具,业界公认最佳为Spark.Spark是基于内存计算的大数据并行计算框架,Spark目前是Apache软件基金会旗下,顶级的开源项目,Spark提出的DAG作为MapReduce的替代方案,兼容HDFS.H…
本文来自 网易云社区 . Join操作是数据库和大数据计算中的高级特性,大多数场景都需要进行复杂的Join操作,本文从原理层面介绍了SparkSQL支持的常见Join算法及其适用场景. Join背景介绍 Join是数据库查询永远绕不开的话题,传统查询SQL技术总体可以分为简单操作(过滤操作-where.排序操作-limit等),聚合操作-groupby以及Join操作等.其中Join操作是最复杂.代价最大的操作类型,也是OLAP场景中使用相对较多的操作.因此很有必要对其进行深入研究. 另外,从业…