半年前用numpy写了个鸢尾花分类200行..每一步计算都是手写的  python构建bp神经网络_鸢尾花分类 现在用pytorch简单写一遍,pytorch语法解释请看上一篇pytorch搭建简单网络 import pandas as pd import torch.nn as nn import torch class MyNet(nn.Module): def __init__(self): super(MyNet, self).__init__() self.fc = nn.Sequen…
Keras介绍   Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow.Theano.MXNet以及CNTK.Keras 为支持快速实验而生,能够把你的idea迅速转换为结果.Keras适用的Python版本是:Python 2.7-3.6.   Keras,在希腊语中意为"角"(horn),于2015年3月份第一次发行,它可以在Windows, Linux, Mac等系统中运行.那么,既然有了TensorFlow(或Theano.M…
# -*- coding: utf-8 -*- """ Created on Wed Oct 31 20:59:39 2018 脚本描述:采用boosting思想开发一个解决二分类样本不平衡的多估计器模型 @author: WZD """ from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split impo…
03_利用pytorch解决线性回归问题 目录 一.引言 二.利用torch解决线性回归问题 2.1 定义x和y 2.2 自定制线性回归模型类 2.3 指定gpu或者cpu 2.4 设置参数 2.5 训练 2.6 保存模型 三.代码汇总 四.总结 一.引言 上一篇文章我们利用numpy解决了线性回归问题,我们能感觉到他的麻烦之处,很多数学性的方法都需要我们自己亲手去实现,这对于数学不好的同学来说,简直就是灾难,让你数学又好并且码代码能力又强,臣妾做不到呀!因此我们说到,可以利用torch这个框架…
OvO与OvR 前文书道,逻辑回归只能解决二分类问题,不过,可以对其进行改进,使其同样可以用于多分类问题,其改造方式可以对多种算法(几乎全部二分类算法)进行改造,其有两种,简写为OvO与OvR OvR one vs rest,即一对剩余所有,如字面意思,有的时候称为OvA,one vs all 假设有四个类别,对于这种分类问题,可以将一个类别选中以后,使其他三个类别合并为一个类别,即其它类别,这样就换变为二分类问题了,这种可以形成四种情况,选择预测概率高的,也就是说,有n个类别就进行n次分类,然…
上一期我们介绍了CUDA下载安装以及其总结,这一期教大家如何在Anaconda中使用CUDA来进行加速.神经网络依赖cuDNN的下载安装,以及下载和安装Pytorch-GPU安装包的三种方式(conda.pip.轮子). 还未下载安装 CUDA 和 Anaconda,请看往期文章,是全套系列的总结,包你不用开很多网页,然而只为了下载安装一个工具而已.... Anaconda中使用 在CUDA安装完之后,如果想要学习深度学习中的神经网络的话,则额外下载安装cuDNN,可帮助我们加快神经网络的运算,…
人工智能神经网络( Artificial Neural Network,又称为ANN)是一种由人工神经元组成的网络结构,神经网络结构是所有机器学习的基本结构,换句话说,无论是深度学习还是强化学习都是基于神经网络结构进行构建.关于人工神经元,请参见:人工智能机器学习底层原理剖析,人造神经元,您一定能看懂,通俗解释把AI"黑话"转化为"白话文". 机器学习可以解决什么问题 机器学习可以帮助我们解决两大类问题:回归问题和分类问题,它们的主要区别在于输出变量的类型和预测目标…
从 SVM的那几张图能够看出来,SVM是一种典型的两类分类器.即它仅仅回答属于正类还是负类的问题.而现实中要解决的问题,往往是多类的问题(少部分例外,比如垃圾邮件过滤,就仅仅须要确定"是"还是"不是"垃圾邮件).比方文本分类,比方数字识别.怎样由两类分类器得到多类分类器,就是一个值得研究的问题. 还以文本分类为例.现成的方法有非常多,当中一种一劳永逸的方法,就是真的一次性考虑全部样本,并求解一个多目标函数的优化问题,一次性得到多个分类面.就像下图这样: waterm…
对深度学习感兴趣,热爱Tensorflow的小伙伴,欢迎关注我们的网站!http://www.tensorflownews.com.我们的公众号:磐创AI. 一. 介绍 世界上每天都在生成数量惊人的文本数据.Google每秒处理超过40,000次搜索,而根据福布斯报道,每一分钟我们都会发送1600万条短信,并在Facebook上发布510,00条评论.那么一个外行人来说,是否真的很难处理如此庞大的数据量? 仅新闻网站和其他在线媒体每小时就会产生大量的文本内容.如果没有合适的工具,分析文本数据的模…
关于LeNet-5 LeNet5的Pytorch实现在网络上已经有很多了,这里记录一下自己的实现方法. LeNet-5出自于Gradient-Based Learning Applied to Document Recognition中,被用于手写数字识别,也是首批在图像识别中运用了卷积的网络.LeNet-5的网络结果如下: 从这个网络结构图中可以看出,网络首先经过了卷积.池化.卷积.池化.全连接.全连接.接下来对这些层做一些解释. 网络结构 第一次卷积 LeNet-5的第一次卷积采用了5*5的…