分类算法的R语言实现案例】的更多相关文章

最近在读<R语言与网站分析>,书中对分类.聚类算法的讲解通俗易懂,和数据挖掘理论一起看的话,有很好的参照效果. 然而,这么好的讲解,作者居然没提供对应的数据集.手痒之余,我自己动手整理了一个可用于分类算法的数据集(下载链接:csdn下载频道搜索“R语言与网站分析:数据集样例及分类算法实现”),并用R语言实现了朴素贝叶斯.SVM和人工神经网络分类. 数据集记录的是泰坦尼克号乘客的存活情况.数据集包括乘客的等级(class).年龄(age).性别(sex)和存活情况(survive),最终希望通过…
1.数据准备 # 测试数组 vector = c(,,,,,,,,,,,,,,) vector ## [] 2.R语言内置排序函数 在R中和排序相关的函数主要有三个:sort(),rank(),order(). sort(x)是对向量x进行排序,返回值排序后的数值向量; rank()是求秩的函数,它的返回值是这个向量中对应元素的“排名”; order()的返回值是对应“排名”的元素所在向量中的位置. sort(vector) ## [] order(vector) ## [] rank(vect…
决策树分类算法 1.概述 决策树(decision tree)——是一种被广泛使用的分类算法. 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现,决策树更加适用. 2.算法思想 通俗来说,决策树分类的思想类似于找对象.现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢…
近邻分类 简言之,就是将未标记的案例归类为与它们最近相似的.带有标记的案例所在的类. 应用领域: 1.计算机视觉:包含字符和面部识别等 2.推荐系统:推荐受众喜欢电影.美食和娱乐等 3.基因工程:识别基因数据的模式,用于发现特定的蛋白质或疾病等 K最近邻(kNN,k-NearestNeighbor)算法 K最近邻分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻. kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别(类似投票)…
1.读取数据 > bank=read.table("bank-full.csv",header=TRUE,sep=";") > 2.查看数据结构 > bank=read.table("bank-full.csv",header=TRUE,sep=",") > str(bank) obs. variables: $ age : ... $ job : Factor w levels "admin…
人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统.现代神经网络是一种非线性统计性数据建模工具,常用来对输入和输出间复杂的关系进行建模,或用来探索数据的模式. 人工神经网络从以下四个方面去模拟人的智能行为: 物理结构:人工神经元将模拟生物神经元的功能 计算模拟:人脑的神经元有局部计算和存储的功能,通过连接构成一个系统.人工神经网络中也有大量…
一.简介 决策树分类算法(decision tree)通过树状结构对具有某特征属性的样本进行分类.其典型算法包括ID3算法.C4.5算法.C5.0算法.CART算法等.每一个决策树包括根节点(root node),内部节点(internal node)以及叶子节点(leaf node). 根节点:表示第一个特征属性,只有出边没有入边,通常用矩形框表示. 内部节点:表示特征属性,有一条入边至少两条出边,通常用圆圈表示. 叶子节点:表示类别,只有一条入边没有出边,通常用三角表示. 决策树算法主要用于…
目录 R语言构建蛋白质网络并实现GN算法 1.蛋白质网络的构建 2.生物网络的模块发现方法 3.模块发现方法实现和图形展示 4.附录:igraph中常用函数 参考链接 R语言构建蛋白质网络并实现GN算法 1.蛋白质网络的构建 我们使用与人类HIV相关的蛋白质互作数据hunam-HIV PPI.csv来构建这个蛋白质互作网络. 在R中,我们可以从存储在R环境外部的文件读取数据.还可以将数据写入由操作系统存储和访问的文件. R可以读取和写入各种文件格式,如:csv,excel,xml等. 想要读取c…
K-means聚类 将n个观测点,按一定标准(数据点的相似度),划归到k个聚类(用户划分.产品类别划分等)中. 重要概念:质心 K-means聚类要求的变量是数值变量,方便计算距离. 算法实现 R语言实现 k-means算法是将数值转换为距离,然后测量距离远近进行聚类的.不归一化的会使得距离非常远. 补充:scale归一化处理的意义 两个变量之间数值差别太大,比如年龄与收入的数值差别就很大. 步骤 第一步,确定聚类数量,即k的值 方法:肘部法则+实际业务需求 第二步,运行K-means模型 求出…
PageRank算法R语言实现 Google搜索,早已成为我每天必用的工具,无数次惊叹它搜索结果的准确性.同时,我也在做Google的SEO,推广自己的博客.经过几个月尝试,我的博客PR到2了,外链也有几万个了.总结下来,还是感叹PageRank的神奇! 改变世界的算法,PageRank! 目录 PageRank算法介绍 PageRank算法原理 PageRank算法的R语言实现 1. PageRank算法介绍 PageRank是Google专有的算法,用于衡量特定网页相对于搜索引擎索引中的其他…