[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447967 分类: 机器学习2013-07-24 11:50 517人阅读 评论(5) 收藏 举报 目录(?)[-] DBNdbnsetupm DBNdbntrainm DBNrbmtrainm DBNdbnunfoldtonnm 总结 =================================…
(Learning a Deep Convolutional Network for Image Super-Resolution, ECCV2014) 摘要:我们提出了一种单图像超分辨率的深度学习方法(SR).我们的方法直接学习在低/高分辨率图像之间的端到端映射.这个映射表现为通过一个深度的卷积神经网络CNN,把低分辨率的图像作为输入,输出高分辨率图像.我们进一步证明了基于传统的稀疏编码超分辨的方法也可以看作是一个深卷积网络.但不像传统的方法一样分离的处理每一个组成,我们的方法联合优化了所有层…
首先为什么会有Deep learning,我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达. 1.Deep learning与Neural Network 深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现…
https://cloud.tencent.com/developer/article/1118159 http://ruder.io/multi-task/ https://arxiv.org/abs/1706.05098 两种深度学习 MTL 方法 1.Hard 参数共享 在实际应用中,通常通过在所有任务之间共享隐藏层,同时保留几个特定任务的输出层来实现. 共享 Hard 参数大大降低了过拟合的风险.这很直观:我们同时学习的工作越多,我们的模型找到一个含有所有任务的表征就越困难,而过拟合我们…
人工智能旨在了解人类智能的本质,并创造出能模仿人类智能做出反应的智能机器,目前在一些领域已经取得显著的成功,如AI玩游戏.问答系统.自动驾驶.无人机.机器人.翻译.人脸识别.语音识别等领域.深度学习的突破性进展是人们对人工智能产生巨大兴趣的主要原因之一,它包含几个关键的技术:卷积神经网络.循环神经网络.深度强化学习.生成对抗网络.表示学习.注意力机制等. 这里举两个具体的例子.借助人工智能,我们可以使用深度学习技术进行医疗影像处理,帮助患者快速准确地诊断.目前用AI进行结核病检测已经能达到97%…
Deep Neural Network Getting your matrix dimention right 选hyper-pamameter 完全是凭经验 补充阅读: cost 函数的计算公式: 求导公式…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.com/ty4z2008/Qix/blob/master/dl.md)共500条,[篇目二](https://github.com/ty4z2008/Qix/blob/master/dl2.md)开始更新------#####希望转载的朋友**一定要保留原文链接**,因为这个项目还在继续也在不定期更新.希望看到…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…