我们在前面的几节课里讲了Python的并发编程的特性,也了解了多线程编程.事实上,Python的多线程有一个非常重要的话题——GIL(Global Interpreter Lock).我们今天就来讲一讲这个GIL. 一个不解之谜 我们先来看一看这个例子: def CountDown(n): while n>0: n -= 1 现在,我们假设有个很大的数字n=100000000,我们来试试单线程的情况下 执行这个函数,然后看看怎么执行的 import time def main(): start_…
线程: 有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元.是一串指令的集合.线程是程序中一个单一的顺序控制流程.进程内一个相对独立的.可调度的执行单元,是系统独立调度和分派CPU的基本单位指运行中的程序的调度单位.在单个程序中同时运行多个线程完成不同的工作,称为多线程. 进程: qq 要以一个整体的形式暴露给操作系统管理,里面包含对各种资源的调用,内存的管理,网络接口的调用等...对各种资源管理的集合 就可以成为进程. 进程 要操作cpu , 必须要…
一.线程队列 队列特性:取一个值少一个,只能取一次,没有值的时候会阻塞,队列满了,也会阻塞 queue队列 :使用import queue,用法与进程Queue一样 queue is especially useful in threaded programming when information must be exchanged safely between multiple threads. 三种类型: (1)先进先出 (fifo) q=queue.Queue 先进先出队列 (2)#后进…
什么是全局解释器锁GIL Python代码的执行由Python 虚拟机(也叫解释器主循环,CPython版本)来控制,Python 在设计之初就考虑到要在解释器的主循环中,同时只有一个线程在执行,即在任意时刻,只有一个线程在解释器中运行.对Python 虚拟机的访问由全局解释器锁(GIL)来控制,正是这个锁能保证同一时刻只有一个线程在运行. 在多线程环境中,Python 虚拟机按以下方式执行: 1. 设置GIL2. 切换到一个线程去运行3. 运行:    a. 指定数量的字节码指令,或者    …
首先强调背景: 1.GIL是什么?GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定. 2.每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念.但并发和并行又有区别,并行是指两个或者多个事件在同一时刻发生:而并发是指两个或多个事件在同一时间间隔内发生.) 在Python多线程下,每个线程的执行方式:1.获取GIL2.执行代码直到s…
本文主要介绍如何在python中使用线程. 全局解释器锁: python代码的执行是由python虚拟机(又名解释器主循环)进行控制的.python中,主循环中同时只能有一个控制线程在执行,就像单核CPU系统中的多线程一样——内存中可以有很多程序,但是在任意给定时刻只有有一个程序在执行.同理,虽然python解释器中可以运行多个线程,但是在任意给定的时刻,只能有一个线程被解释器执行. 上述对python解释器的访问是由全局解释器锁(GIL)控制的.这个锁的核心作用就是用来保证同时只有能一个线程运…
编程语言分类概念介绍(编译型语言.解释型语言.静态类型语言.动态类型语言概念与区别) https://www.cnblogs.com/zhoug2020/p/5972262.html Python解释器 一般使用的Python解释器CPython:是用C语言实现Pyhon,是目前应用最广泛的解释器.最新的语言特性都是在这个上面先实现,基本包含了所有第三方库支持,但是CPython有几个缺陷,一是全局锁使Python在多线程效能上表现不佳,二是CPython无法支持JIT(Just-in-time…
我们在上一章将生成器的时候最后写了,在Python2中生成器还扮演了一个重要的角色——实现Python的协程.那什么是协程呢? 协程 协程是实现并发编程的一种方式.提到并发,肯很多人都会想到多线程/多进程模型,这就是解决并发问题的经典模型之一.在最初的互联网世界中,多线程/多进程就在服务器并发中起到举足轻重的作用. 但是随着互联网的发展,慢慢很多场合都会遇到C10K瓶颈,也就是同时连接到服务器的客户达到1W,于是,很多代码就跑崩溃,因为进程的上下文切换占用了大量的资源,线程也顶不住如此巨大的压力…
我们在上一章学习了Python并发编程的一种实现方法——多线程.今天,我们趁热打铁,看看Python并发编程的另一种实现方式——Asyncio.和前面协程的那章不太一样,这节课我们更加注重原理的理解. 通过上节课的学习,我们知道在进行I/O操作的时候,使用多线程与普通的单线程比较,效率有了很大的提高,既然这样,为什么还要Asyncio呢? 虽然多线程有诸多优点并且应用广泛,但是也存在一定的局限性: ※多线程运行过程很容易被打断,因此有可能出现race condition的情况 ※线程的切换存在一…
我们在前面应该写过类似的代码 for i in [1,2,3,4,5]: print(i) for in 语句看起来很直观,很便于理解,比起C++或Java早起的 ; i<n;i++) printf("d\n",a[i]) 是不是简洁清晰的多.但是我们有没有想过Python在处理for in语句的时候,具体发生了什么吗?什么样的对象可以被for in用来枚举呢? 所以,这一节我们就深入到Python的容器类型实现底层看一看,了解一下迭代器和生成器. 前面用过的容器.可迭代对象和迭…