机器之心报道 作者:邱陆陆 8 月中旬,谷歌大脑成员 Martin Wicke 在一封公开邮件中宣布,新版本开源框架——TensorFlow 2.0 预览版将在年底之前正式发布.今日,在上海谷歌开发者大会上,机器之心独家了解到一个重大的改变将会把 Eager Execution 变为 TensorFlow 默认的执行模式.这意味着 TensorFlow 如同 PyTorch 那样,由编写静态计算图全面转向了动态计算图. 谷歌开发者大会 在谷歌开发者大会的第二天,主会场全天都将进行 TensorF…
Lecture note 4: Eager execution and interface Eager execution Eager execution is (1) a NumPy-like library for numerical computation with support for GPU acceleration and automatic differentiation, and (2) a flexible platform for machine learning rese…
安装 TensorFlow 2.0 Alpha 本文仅仅介绍 Windows 的安装方式: pip install tensorflow==2.0.0-alpha0 # cpu 版本 pip install tensorflow==2.0.0-alpha0 # gpu 版本 针对 GPU 版的安装完毕后还需要设置环境变量: SET PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0\bin;%PATH% SET PATH=C…
TensorFlow Hub 模型复用 TF Hub 网站 打开主页 https://tfhub.dev/ ,在左侧有 Text.Image.Video 和 Publishers 等选项,可以选取关注的类别,然后在顶部的搜索框输入关键字可以搜索模型. TF Hub 安装 是单独的一个库,需要单独安装,安装命令如下: pip install tensorflow-hub TF Hub 模型使用样例 import tensorflow_hub as hub hub_handle = 'https:/…
Effective TensorFlow 2.0 为使TensorFLow用户更高效,TensorFlow 2.0中进行了多出更改.TensorFlow 2.0删除了篇冗余API,使API更加一致(统一RNNs, 统一优化器),并通过Eager execution更好地与Python集成. 许多RFCs已经解释了TensorFlow 2.0带来的变化.本指南介绍了TensorFlow 2.0应该怎么进行开发.这假设您已对TensorFlow 1.x有一定了解. A brief summary o…
前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,ConvNet)是一种特殊的深度学习神经网络,近年来在物体识别.图像重绘.视频分析等多个层面得到了广泛的应用.本文将以VGG16预训练模型为例子,从人脸识别.预训练模型.图片风格迁移.滤波分析.热力图等多过领域介绍 CNN 的应用. 目录 一.卷积神经网络的原理 二.构建第一个 CNN 对 MNIST 数字…
一.即时执行模式 import tensorflow as tfimport tensorflow.contrib.eager as tfetfe.enable_eager_execution() a = tf.constant(12)counter = 0while not tf.equal(a, 1): if tf.equal(a % 2, 0): a = a / 2 else: a = 3 * a + 1 print(a) 二.用Eager执行模式的MNIST模型构建 import ten…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
TensorFlow 2.0 Alpha目前已经可以通过pip安装,亲测有效,安装指令为: # 普通版本 pip install tensorflow==2.0.0-alpha0 # GPU版本 pip install tensorflow-gpu==2.0.0-alpha0…
tensorflow升级到1.0之后,增加了一些高级模块: 如tf.layers, tf.metrics, 和tf.losses,使得代码稍微有些简化. 任务:花卉分类 版本:tensorflow 1.0 数据:http://download.tensorflow.org/example_images/flower_photos.tgz 花总共有五类,分别放在5个文件夹下. 闲话不多说,直接上代码,希望大家能看懂:) # -*- coding: utf-8 -*- from skimage im…