推导过程类似https://www.cnblogs.com/acjiumeng/p/9742073.html 前面部分min25筛,后面部分杜教筛,预处理min25筛需要伯努利数 //#pragma GCC optimize(2) //#pragma GCC optimize(3) //#pragma GCC optimize(4) //#pragma GCC optimize("unroll-loops") //#pragma comment(linker, "/stack…
题面 传送门 题解 这题有毒--不知为啥的错误调了半天-- 令\(f(i)={sgcd(i)}\),那么容易看出\(f(i)\)就是\(i\)的次大质因子,用\(i\)除以它的最小质因子即可计算 于是题目所求即为 \[\sum_{i=1}^n\sum_{j=1}^n{f(\gcd(i,j))}^k\] \[\sum_{d=1}^n {f(d)}^k\sum_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j=1}^{\left\lfloor\f…
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线性筛筛常见积性函数及其代码:https://blog.masterliu.net/algorithm/sieve/ 积性函数与线性筛(包括普通线性函数):https://blog.csdn.net/weixin_42562050/article/details/87997582 bzoj2154/b…
Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans2 Sample Input 6 1 2 8 13 30 2333 Sample Output 1 1 2 0 22 -2 58 -3 278 -3 1655470 2 正解:线性筛+杜教筛. 杜教筛板子题.然而感觉自己还不是很理解的样子.. 唐老师博客:http://blog.csdn.net/skyw…
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\)是质数 题解 推导很长就省略啦,, 有空补回来 最后推得这个式子: \[\sum\limits_{T = 1}^{n} (\frac{\lfloor \frac{n}{T} \rfloor * (\lfloor \frac{n}{T} \rfloor + 1)}{2})^2 * T^2 * \varphi…
首先感谢又强又嘴又可爱脸还筋道的国家集训队(Upd: WC2019 进候选队,CTS2019 不幸 rk6 退队)神仙瓜 ( jumpmelon ) 给我讲解这三种筛法~~ 由于博主的鸽子属性,这篇博客可能会无限期咕咕咕 线性筛 这种算法是比较基础的筛法,在入门时就已经学习用它来筛一定范围内的质数了,因此具体算法流程无需赘述.但在筛质数的基础上,这种算法由于其优越性质在处理数论函数时也被广泛应用.这里直接给出筛出小于 \(N\) 的质数的模板. void init() { for (int i…
积性函数 积性函数 指对于所有互质的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b) 的数论函数. 特别地,若所有的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b),则称这个函数 f(x)f(x)f(x) 是 完全积性函数. 常见积性函数及其性质 Mobius 函数.∀n∈N∗\forall n\in\N^*∀n∈N∗ 有 μ(n)={1,n=1(−1)k,…
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质因子,重复的质因子计算多次. 特别的,定义 \(f(1) = 0, f(p) = 0\) ,此处 \(p\) 为质数. 题解 首先先莫比乌斯反演前几步. \[ ans = \sum_{d = 1}^{n} f(d)^k \sum_{i = 1}^{\lfloor \frac{n}{d} \rfloo…
本文内容概要: \(A=\sum\limits_{i=1}^n\dfrac1{\sqrt i}=1+\dfrac1{\sqrt2}+\cdots+\dfrac1{\sqrt n}\) \(O(\sqrt n)\) ,将给出一种只需使用初中数学知识的放缩 \(B=\sum\limits_{i=1}^n\sqrt i=1+\sqrt2+\cdots+\sqrt n\) \(O(n\sqrt n)\) ,使用积分进行放缩 \(C=\sum\limits_{i=1}^n\dfrac1i=1+\dfrac…
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利用杜教筛: 求F(n)=∑(f(i)) 存在g=f*I,定义G(n)=∑(g(i)) 就可以得到F(n)=G(n)-∑(F(n/i)) 加一些预处理我们可以做到O(n^(2/3))求解F(n) 我们知道积性函数∑(miu(d))=0(d|n),又有∑(miu(d))=1(n=1), 所以∑∑(miu…