首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Spark流式编程介绍 - 编程模型
】的更多相关文章
Spark流式编程介绍 - 编程模型
来源Spark官方文档 http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#programming-model 编程模型 结构化流中的核心概念就是将活动数据流当作一个会不断增长的表.这是一个新的流处理模型,但是与批处理模型很相似.你在做流式计算就像是标准针对静态表的批查询,Spark会在一个无限输入的表上进行增量查询.我们来从更多详细内容来理解这个模型. 基本概念 将输入的数据流理解为"写…
Storm简介——实时流式计算介绍
概念 实时流式计算: 大数据环境下,流式数据将作为一种新型的数据类型,这种数据具有连续性.无限性和瞬时性.是实时数据处理所面向的数据类型,对这种流式数据的实时计算就是实时流式计算. 特征 实时流式计算与传统的数据处理技术不同,其具有一下特点: 低延迟:从处理的数据角度来看,每一条数据都可以在有限的时间内由系统成功处理完成,就是响应的时间很短. 高吞吐:从处理的过程角度来看,系统节点在单位时间内能够成功处理的数据量比较多,也就是高吞吐量.对于数据处理的目标本质来说高吞吐量和低延迟是一样的. 高容错…
实时查询系统架构:spark流式处理+HBase+solr/ES查询
最近要做一个实时查询系统,初步协商后系统的框架 1.流式计算:数据都给spark 计算后放回HBase 2.查询:查询采用HBase+Solr/ES…
Spark流式状态管理(updateStateByKey、mapWithState等)
通常使用Spark的流式框架如Spark Streaming,做无状态的流式计算是非常方便的,仅需处理每个批次时间间隔内的数据即可,不需要关注之前的数据,这是建立在业务需求对批次之间的数据没有联系的基础之上的. 但如果我们要跨批次做一些数据统计,比如batch是3秒,但要统计每1分钟的用户行为,那么就要在整个流式链条中维护一个状态来保存近1分钟的用户行为. 那么如果维护这样一个状态呢?一般情况下,主要通过以下几种方式: 1. spark内置算子:updateStateByKey.mapWithS…
流式 storm介绍
Storm是什么 如果只用一句话来描述storm的话,可能会是这样:分布式实时计算系统.按照storm作者的说法,storm对于实时计算的意义类似于hadoop对于批处理的意义.我们都知道,根据google mapreduce来实现的hadoop为我们提供了map, reduce原语,使我们的批处理程序变得非常地简单和优美.同样,storm也为实时计算提供了一些简单优美的原语.我们会在第三节中详细介绍. 我们来看一下storm的适用场景. 流数据处理.Storm可以用来处理源源不断流进来的消息,…
Stream流式编程
Stream流式编程 Stream流 说到Stream便容易想到I/O Stream,而实际上,谁规定“流”就一定是“IO流”呢?在Java 8中,得益于Lambda所带来的函数式编程,引入了一个全新的Stream概念,用于解决已有集合类库既有的弊端. 当需要对多个元素进行操作(特别是多步操作)的时候,考虑到性能及便利性,我们应该首先拼好一个“模型”步骤方案,然后再按照方案去执行它. 诸如filter . map. skip都是在对函数模型进行操作,集合元素并没有真正被处理.只有当终结方法…
Paip.Php Java 异步编程。推模型与拉模型。响应式(Reactive)”编程FutureData总结... 1
Paip.Php Java 异步编程.推模型与拉模型.响应式(Reactive)"编程FutureData总结... 1.1.1 异步调用的实现以及角色(:调用者 提货单) FutureData 1.1.2 异步编程接口设计(,回调函数, 事件触发) 1.1.3 异步编程的优缺点 1.1.4 推模型与拉模型 1.1.5 "响应式(Reactive)"编程.响应式框架 1.1.6 异步同步化 1.1.7 …
20190827 On Java8 第十四章 流式编程
第十四章 流式编程 流的一个核心好处是,它使得程序更加短小并且更易理解.当 Lambda 表达式和方法引用(method references)和流一起使用的时候会让人感觉自成一体.流使得 Java 8 更具吸引力. 流式编程采用内部迭代. 流是懒加载的. 流支持 Java 8 采用的解决方案是:在接口中添加被 default(默认)修饰的方法.通过这种方案,设计者们可以将流式(stream)方法平滑地嵌入到现有类中.流方法预置的操作几乎已满足了我们平常所有的需求.流操作的类型有三种:创建流,修…
GPU编程和流式多处理器(四)
GPU编程和流式多处理器(四) 3.2. 单精度(32位) 单精度浮点支持是GPU计算的主力军.GPU已经过优化,可以在此数据类型上原生提供高性能,不仅适用于核心标准IEEE操作(例如加法和乘法),还适用于非标准操作(例如对先验的近似(例如sin()和log())).32位值与整数保存在同一寄存器文件中,因此单精度浮点值和32位整数(使用__float_as_int()和__int_as_float())之间的强制转换是免费的. 加法,乘法和乘加 编译器自动将浮点值的+,–和*运算符转换为加,乘…
GPU编程和流式多处理器(三)
GPU编程和流式多处理器(三) 3. Floating-Point Support 快速的本机浮点硬件是GPU的存在理由,并且在许多方面,它们在浮点实现方面都等于或优于CPU.全速支持异常可以根据每条指令指定直接舍入,特殊功能单元可为六种流行的单精度先验函数,提供高性能的近似函数.相比之下,x86 CPU在微代码中实现异常,其运行速度可能比在规范化浮点算子上运行的速度慢100倍.舍入方向是由一个控制字指定的,该控制字需要数十个时钟周期来更改,并且SSE指令集中唯一的超越逼近函数是用于倒数和倒数平…