1. 讲讲SVM 1.1 一个关于SVM的童话故事 支持向量机(Support Vector Machine,SVM)是众多监督学习方法中十分出色的一种,几乎所有讲述经典机器学习方法的教材都会介绍.关于SVM,流传着一个关于天使与魔鬼的故事. 传说魔鬼和天使玩了一个游戏,魔鬼在桌上放了两种颜色的球.魔鬼让天使用一根木棍将它们分开.这对天使来说,似乎太容易了.天使不假思索地一摆,便完成了任务.魔鬼又加入了更多的球.随着球的增多,似乎有的球不能再被原来的木棍正确分开,如下图所示. SVM实际上是在为…
原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得…
支持向量机通俗导论(理解SVM的三层境界) 原文:http://blog.csdn.net/v_JULY_v/article/details/7624837 作者:July .致谢:pluskid.白石.JerryLead.说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月.声明:本文于2012年便早已附上所有参考链接,并注明是篇“学习笔记”,且写明具体参考了pluskid等人的文章.文末2013年的PDF是为证. 前言 动笔写这个支持向量…
支持向量机通俗导论(理解SVM的三层境界) 作者:July :致谢:pluskid.白石.JerryLead. 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易…
支持向量机通俗导论(理解SVM的三层境界) 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完整概括和介绍支持向量机的导论性的文章. 本文在写的过程中,参考了不…
作者:July .致谢:pluskid.白石.JerryLead.说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月.声明:本文于2012年便早已附上所有参考链接,并注明是篇“学习笔记”,且写明具体参考了pluskid等人的文章.文末2013年的PDF是为证. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者…
支持向量机通俗导论(理解SVM的三层境地) 作者:July :致谢:pluskid.白石.JerryLead.出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因非常简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末參考链接),但在描写叙述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通…
在浏览本篇博客之前,最好先查看一下我写的还有一篇文章机器学习之初识SVM(点击可查阅哦).这样能够更好地为了结以下内容做铺垫! 支持向量机学习方法包括构建由简至繁的模型:线性可分支持向量机.线性支持向量机及非线性支持向量机.当训练数据线性可分时.通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机.又称为硬间隔支持向量机:当训练数据近似线性可分时.通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机,又称为软间隔支持向量机:当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习…
CSharpGL(55)我是这样理解PBR的 简介 PBR(Physically Based Rendering),基于物理的渲染,据说是目前最先进的实时渲染方法.它比Blinn-Phong方法的真实感更强,几乎是照片级的效果. 下图就是PBR的一个例子,读者可在CSharpGL中找到. +BIT祝威+悄悄在此留下版了个权的信息说: 应用题 PBR虽然看起来很复杂,但仍旧是在解一个应用题,只要明确了已知条件和所求问题,就没有什么难以理解的了. 已知条件如下: 对于不透明的三维模型(Cube.Sp…
遵循统一的机器学习框架理解SVM 一.前言 我的博客仅记录我的观点和思考过程.欢迎大家指出我思考的盲点,更希望大家能有自己的理解. 本文参考了李宏毅教授讲解SVM的课程和李航大大的统计学习方法. 二.理解 统一的机器学习框架(MLA): 1.模型(Model) 2.策略(Loss) 3.算法(Algorithm) 按照如上所说框架,SVM最核心的就是使用了 Hinge Loss 和 核方法 . SVM: Hinge Loss + Kernel Method Model 给定数据集 \((x^1,…