Deformable 可变形的DETR】的更多相关文章

Deformable 可变形的DETR This repository is an official implementation of the paper Deformable DETR: Deformable Transformers for End-to-End Object Detection. 该存储库是论文<可变形DETR:用于端到端对象检测的可变形变压器>的正式实现. https://github.com/fundamentalvision/deformable-detr Int…
Rich feature hierarchies for accurate object detection and semantic segmentation Tech report (v5) primary首要的 primate原始的 homogeneous均匀的 deformable可变形的 在最近几年中,在PASCAL VOC数据集上测量的目标检测的性能已经趋于平稳.性能最好的方法是复杂的.可理解的系统,这些系统通常将多个底层图像特性与高层上下文结合起来.在这篇论文中,我们提出了一个简单…
如何评价 MSRA 视觉组最新提出的 Deformable ConvNets V2? <Deformable Convolutional Networks>是一篇2017年Microsoft Research Asia的研究.基本思想也是卷积核的采样方式是可以通过学习得到的.作者提出了两种新的op:deformable convolution和deformable roi pooling,主要是通过给传统卷积采样点加offsets的方式来获得新的采样点.来自:https://arxiv.org…
上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转.平移.缩放.剪裁性.为什么要做这个很奇怪的结构呢?原因还是因为CNN不够鲁棒,比如把一张图片颠倒一下,可能就不认识了(这里mark一下,提高CNN的泛化能力,值得继续花很大力气,STN是一个思路,读者以及我自己应该多想想,还有什么方法?). 今天介绍的这一篇可变形卷积网络deformable co…
关于可变部件模型的描写叙述在作者[2010 PAMI]Object Detection with Discriminatively Trained Part Based Models的论文中已经有说明: 含有n个部件的目标模型能够形式上定义为一个(n+2)元组:(F0,P1,..., Pn, b),F0是根滤波器,Pi是第i个部件的模型,b是表示偏差的实数值.每一个部件模型用一个三元组定义:(Fi,vi, di),Fi是第i个部件的滤波器:vi是一个二维向量,指定第i个滤波器的锚点位置(anch…
论文源址:https://arxiv.org/abs/1811.11168 摘要 可变形卷积的一个亮点是对于不同几何变化的物体具有适应性.但也存在一些问题,虽然相比传统的卷积网络,其神经网络的空间形状更接近于目标物体的形状,但有时会超出ROI区域,从而引入不相关的图像信息进而对提取的特征造成影响.为此,本文提出了改造后的可变形卷积,通过增加建模及更强的训练来改善其聚焦图像相关区域的能力.通过在网路中引入更多的可变形卷积,同时,引入调制机制来扩大可变形的范围.为了有效的利用丰富的建模能力,通过一个…
论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络由于其构建时固定的网络结构,因此只能处理模型的几何变换问题.本文主要介绍了两种增强CNN模型变换的模型,称为可变形卷积及可变形RoI pooling.二者都基于一种思路,通过额外增加模型的偏移及根据目标任务对此偏移量进行学习来增强空间采样位置.新模型可以取代CNN中的原有模型,可以通过反向传播算法进…
Deformable ConvNets 论文 Deformable Convolutional Networks(arXiv:1703.06211) CNN受限于空间结构,具有较差的旋转不变性,较弱的平移不变性.这篇论文提出了两个可替换原有组件的模块:可变形卷积和RoI pooling.均基于增加空间采样位置,通过网络学习位置偏移的思想. 传统增加空间变换性的方法 数据集增广 通过仿射变换等使数据集具有足够多的变换形式,使得模型能够从数据中学习到鲁棒的表示.但缺点是训练代价大,模型参数复杂. 使…
写在前面: DPM(Deformable Part Model),正如其名称所述,可变形的组件模型,是一种基于组件的检测算法,其所见即其意.该模型由大神Felzenszwalb在2008年提出,并发表了一系列的cvpr,NIPS.并且还拿下了2010年,PASCAL VOC的“终身成就奖”. 由于DPM用到了HOG的东西,可以参考本人http://blog.csdn.net/qq_14845119/article/details/52187774 算法思想: (1)Root filter+ Pa…
接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言:AutoML-NasNet VGG结构和INception结构.ResNet基元结构的出现,验证了通过反复堆叠小型inception结构可以构建大型CNN网络,而构建过程可以通过特定的规则自动完成.自动完成大型网络的稀疏性构建出现了一定的人为指导,如Mobile.xception.Shuffle.…