@ 目录 一.工具安装 1.1 Anaconda 安装 1.2 Pytorch安装 二.编辑器安装 2.1 Pycharm安装 2.2 Jupyter安装 OS: ubuntu 20.04(虚拟机) 一.工具安装 1.1 Anaconda 安装 首先安装Anaconda ,我是去清华大学镜像站下载,版本为 Anaconda3-5.2.0-Linux-x86_64.sh 参考这篇CSDN博客安装好. 安装成功测试: 首先创建一个虚拟环境: conda create -n pytorch pytho…
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…
PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen NLP,用于概率图模型的Pyro,扩展了PyTorch的功能.通过学习<深度学习入门之PyTorch>,可以从机器学习和深度学习的基础理论入手,从零开始学习 PyTorch,了解 PyTorch 基础,以及如何用 PyTorch 框架搭建模型.学到机器学习中的线性回归和 Logistic 回归.深度…
对于许多科学家.工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架.TensorFlow 1.0于2017年2月发布,可以说,它对用户不太友好. 在过去的几年里,两个主要的深度学习库Keras和Pytorch获得了大量关注,主要是因为它们的使用比较简单. 本文将介绍Keras与Pytorch的4个不同点以及为什么选择其中一个库的原因. Keras Keras本身并不是一个框架,而是一个位于其他深度学习框架之上的高级API.目前它支持TensorFlow.Theano和CNTK.…
深度学习调用TensorFlow.PyTorch等框架 一.开发目标目标 提供统一接口的库,它可以从C++和Python中的多个框架中运行深度学习模型.欧米诺使研究人员能够在自己选择的框架内轻松建立模型,同时也简化了这些模型的产品离子化. 支持TensorFlow.PyTorch.TorchScript和Keras等深度学习框架. 使用一个API从任何支持的框架运行模型,运行TensorFlow模型看起来就像运行PyTorch模型. x = np.array([1, 2, 3, 4]) y =…
反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性模型就是一个最简单的神经网络的结构,其内部参数的更新过程如下: 对于简单的模型来说可以直接使用表达式的方式来更新权重,但是如果网络结构比较复杂(如下图),直接使用解析式的方式来更新显然有些复杂且不太可能实现. 反向传播就是为了解决这种问题.反向传播的基本思想就是将网络看成一张图,在图上传播梯度,从而使用链式传…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的,对32*32的CIFAR10图片,网络结构做了微调:删除了最后一层最大池化,具体参见网络定义代码,这里采用VGG19,并加入了BN: ''' 创建VGG块 参数分别为输入通道数,输出通道数,卷积层个数,是否做最大池化 ''' def make_vgg_block(in_channel, out_ch…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFAR10,图片是32*32,尺寸远小于227*227,因此对网络结构和参数需做微调: 最后一个max-pool层删除 网络定义代码如下: class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self…
多分类问题 目录 多分类问题 Softmax 在Minist数据集上实现多分类问题 作业 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili Softmax 这一讲介绍使用softmax分类器实现多分类问题. 上一节课计算的是二分类问题,也就是输出的label可以分类为0,1两类.只要计算出\(P(y=1)\)的概率,那么\(P(y=0)=1-P(y=1)\):所以只需要计算一种类型的概率即可,也就是只要一个参数. 而在使用…
处理多维特征的输入 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 这一讲介绍输入为多维数据时的分类. 一个数据集示例如下: 由于使用的是多维的数据,因此模型中的x和y都应该变为向量的形式,变为如下式子: 而下方针对多维数据的式子中的一部分可以使用矩阵相乘的方式表示: \[\hat y^{(i)}=\sigma([x_1^{(i)}...x_8^{(i)}]\begin{bmatrix} w_1\\ .\\ .\\ .\…