摘要:这篇文章将讲解TensorFlow如何保存变量和神经网络参数,通过Saver保存神经网络,再通过Restore调用训练好的神经网络. 本文分享自华为云社区<[Python人工智能] 十一.Tensorflow如何保存神经网络参数 丨[百变AI秀]>,作者: eastmount. 一.保存变量 通过tf.Variable()定义权重和偏置变量,然后调用tf.train.Saver()存储变量,将数据保存至本地"my_net/save_net.ckpt"文件中. # -*…
在TensorFlow中变量的作用是保存和更新神经网络中的参数,需要给变量指定初始值,如下声明一个2x3矩阵变量 weights =tf.Variable(tf.random_normal([2,3], stddev=1)) 在这段代码中tf.random_normal([2,3], stddev=1)会产生一个2x3的矩阵,矩阵中的元素是均值为0,标准差为2的随机数.tf.random_normal()可以通过参数mean来指定平均值,不指定默认0. 函数名称 随机数分布 主要参数 tf.ra…
#coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size def weight_varia…
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day 6: 快速入门 Tensorflow 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相…
用Tensorflow搭建神经网络的一般步骤如下: ① 导入模块 ② 创建模型变量和占位符 ③ 建立模型 ④ 定义loss函数 ⑤ 定义优化器(optimizer), 使 loss 达到最小 ⑥ 引入激活函数, 即添加非线性因素 (线性回归问题跳过此步骤) ⑦ 训练模型 ⑧ 检验模型 ⑨ 使用模型预测数据 ⑩ 保存模型 ⑪ 使用Tensorboard的可视化功能 下面以一个简单的线性回归问题为例: 首先是训练模型的代码: train_model.py # ① 导入模块 import tensor…
http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码,想看视频的也可以去他的优酷里的频道找. Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相连接并进行计算,在外界信息的基础上,改变内部的结构,常用来对输入和输出间复杂的关系进行建模. 神经网络由大量的节点和之间的联系构成,负责传递信息和加工信息,神经元也…
TensorFlow 模型保存与恢复 一个快速完整的教程,以保存和恢复Tensorflow模型. 在本教程中,我将会解释: TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如何恢复预测/转移学习的TensorFlow模型? 如何使用导入的预先训练的模型进行微调和修改? 这个教程假设你已经对神经网络有了一定的了解.如果不了解的话请查阅相关资料. 1. 什么是TensorFlow模型? 训练了一个神经网络之后,我们希望保存它以便将来使用.那么什么是TensorFlow模型?…
TensorFlow实现超参数调整 正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值,甚至选择什么样的优化器优化权重和偏置. 超参数调整过程 调整超参数的第一步是构建模型.与之前一样,在 TensorFlow 中构建模型. 添加一种方法将模型保存在 model_file 中.在 TensorFlow 中,可以使用 Saver 对象来完成.然后保存在会话中: 确定要调整的超参数,并为…
tensorflow之神经网络实现流程总结 1.数据预处理preprocess 2.前向传播的神经网络搭建(包括activation_function和层数) 3.指数下降的learning_rate 4.参数的指数滑动平均EMA 5.防止过拟合的正则化regularization 6.loss损失函数构造(loss_ + regularization) 7.后向传播和梯度下降(learning_rate + loss) 8.评价函数的构造(accuracy + EMA) 9.run 模型(用v…
创建神经网络模型 1.构建神经网络结构,并进行模型训练 import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt #python的结果可视化模块 """定义一个添加神经层的函数 inputs:输入数据 in_size:输入神经元的个数 out_size:输出神经元的个数 activation_function:激活函数"""def add_layer(inpu…